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ABSTRACT 

 

Nickel base super alloy and titanium alloy notched components are of utmost 

importance because of their application in the aero industry. Titanium alloy is used for 

airframe components and compressor blades application because of its high strength and 

fracture toughness at low temperatures and high strength and creep resistance at elevated 

temperature. Nickel base super alloy is used in hot sections of the gas turbine engine due 

to its high strength and good creep, fatigue, and corrosion resistance at high temperature. 

The microstructure features of these alloys are reviewed and crystal plasticity finite 

element modeling is presented. A new probabilistic approach based on weakest-link 

theory which captures both the essence of microstructure and the notch root stress 

gradient is described and applied to nickel base superalloy and titanium alloys to 

determine their microstructure sensitive fatigue notch factor and notch sensitivity index at 

varying notch root radii. The effects of the position and the orientations of inclusion on 

the fatigue notch factor of nickel base super alloy is also investigated. The fatigue notch 

factors obtained are in direct correlation with the experimentally obtained value for the 

different notch root radii.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

One of the pioneer researchers to address the topic of fatigue was WhÖler, who in 

1870 gave a general law expressed as follows: “Rupture may be caused, not only by a 

steady load which exceeds the carrying strength but also by repeated application of 

stresses, none of which are equal to this carrying strength. The differences of these 

stresses are measures of the disturbance of the continuity, in so far as by their increase the 

minimum stress which is still necessary for rupture diminishes [1].” 

Many engineering components and structures operate under fluctuating or cyclic 

loads. These loading conditions induce cyclic stresses that lead to fatigue failure. There 

are two major domains of cyclic stresses: low-cycle fatigue (LCF) and high-cycle fatigue 

(HCF). Different attempts have been made to distinguish between LCF and HCF. Cyclic 

plasticity and strain control conditions characterize LCF while HCF is associated with 

purely elastic behavior and it generally involves load control conditions [1]. In general, 

HCF is characterized by low amplitudes, high frequencies, large number of cycles and 

nominally elastic cyclic behavior.   

Fatigue failure is progressive in nature and it involves the initiation and 

propagation of cracks. In HCF, a large fraction of life is required to produce inspectable 

size cracks while a small fraction of life is left for propagation to failure due to its high 

frequency and low stress amplitudes. Once the cracks attain a critical dimension, sudden 
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failure results from additional loading cycle. This phenomenon makes the early discovery 

and prediction of HCF related failure a cumbersome endeavor.  

Numerous failures relating to fatigue have been recorded in the past; typical 

examples of the failures are presented in Table 1.1. One significant failure worth 

mentioning of the listed failures is the United Airlines DC 10 Flight No 232 which 

crashed at Sioux City, Iowa with 112 fatalities in the year 1989 (Figure 1.1). According 

to the investigation conducted by the National Transportation Safety Board, the cause of 

failure was attributed to the fatigue crack which originated from an undetected 

metallurgical defect located in a significant area of the aircraft engine [2].  

Table 1.1 Historic fatigue failures [3] 

Failure Year Reason for Failure 

Comet aircraft failures  1950s Fatigue crack initiation in pressurized skins 

due to high gross stresses and stress 

concentration effects from geometric 

features.   

F-111 Aircraft No. 94 wing 

pivot fitting  

1969 Fatigue failure due to material defect in 

high-strength steel. 

Aloha Incident, Boeing 737  1988 Accelerated corrosion and multiple fatigue 

crack-initiation sites in riveted fuselage skin. 

Sioux City incident  1989 Hard alpha case present in titanium fan disk 

resulted in fatigue crack initiation and 

catastrophic failure.   
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Fatigue failure is mostly dangerous as it occurs over time and at stress levels not 

only lower than the ultimate tensile strength but also the yield strength of the material.  

 

 

Figure 1.1. United Airlines DC-10 Sioux City Incident [4]. 

 

Most engineering components have structural discontinuities and imperfections. 

Discontinuities can be in the form of keyways, weld fillets, holes for bolts, and rivets. 

Other forms of discontinuities are caused by the ingestion of foreign objects during 

operation causing foreign object damage.  Imperfections can be in the form of voids or 

inclusion of impurities during metal forming. These discontinuities and inclusions serve 

as stress concentration zones or stress raisers as they tend to change the stress field 

distribution in the region; the local stress in the vicinity of the discontinuities is usually 

higher than the net section stress in the component. This effect is quantified in linear 
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elastic material using the stress concentration factor, kt which is the ratio of the maximum 

local stress at the notch root to the remotely applied stress. The regions of stress 

concentration are perfect sites for crack initiation for components under cyclic loading. 

These discontinuities are usually modeled as notches with a certain depth and notch root 

radius to investigate their effects on the fatigue life of components subjected to cyclic 

loading [5, 6]. The resulting notch effect is characterized using a fatigue strength 

reduction factor also known as fatigue notch factor, kf.  A good relationship has been 

determined for kt and kf which is called the fatigue notch sensitivity index, q, and is used 

to indicate materials sensitivity to notches. The value of q ranges from zero to one; zero 

indicates no notch sensitivity while one indicates full notch sensitivity.  

 

1.2 Research Motivation and Objectives 

Nickel base superalloy and titanium alloy find applications in aero engine 

components because of their unique properties and are thus referred to as aero engine 

materials. Titanium alloy Ti-6Al-4V offers a range of properties such as high strength 

and fracture toughness at low temperatures to high strength and creep resistance at 

elevated temperature. Thus, they are widely used in engineering applications from 

airframe components and fans to compressor blades of jet engines. Nickel based super 

alloy IN 100 is widely used in the hot sections of the gas turbine engine due to its 

superior strength, high creep and corrosion resistance at high temperatures [7]. A cross-

section of a jet engine (PW2037) showing different components of the aircraft engine and 

the alloys used in making them is shown in Figure 1.2.  
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Figure 1.2. Cross section of a jet engine(PW2037) [8] 

 

Ingestion of debris into the engine of aircraft during takeoff and landing causes 

nicks and dents to form on the leading and trailing edge of turbine blades (Figures 1.3 

and 1.4). These dents and nicks can be treated as small notches and thus serve as stress 

raiser and favorable zones for crack initiation therefore reducing the fatigue strength of 

the material. This phenomenon is referred to as foreign object damage (FOD) and can be 

modeled as small notches with notch root radius and notch depth [5, 6].  
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Figure 1.3. Image of FOD damage; (a) Fan blade schematics (b) FOD damage example 

on edges of airfoil [6] 

 

 

Figure 1.4. Nicks and dents caused by ingested foreign materials on the leading edge of 

compressor blade [9] 
 

Inclusions play a major role in the fatigue strength reduction of multiphase alloys 

such as nickel base superalloys as the inclusions serve as zones of crack nucleation [10]. 

Popular inclusions commonly found in nickel base superalloy are carbides close to the 

grain boundaries or within a grain and pores within the polycrystal which results in 
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incompatible deformation between the inclusions and the neighboring materials leading 

to localized plasticity when subjected to cyclic loading.  

The turbine engine operates at very high temperature and thus the blades have 

tiny pores for cooling purposes as shown in Figure 1.5. The coolants are forced through 

the pores at high pressure for cooling of the system [11]. These pores serve as areas of 

stress concentration and are typical locations for localized micro-plasticity thus reducing 

the fatigue strength of the material when subjected to cyclic loading. The holes also serve 

as favorable zones for crack initiation leading to early retirement of the turbine blade and 

engine (Figure 1.6).   Notches and inclusions form part of the major factors that dictate 

the fatigue strength of structures.  

The fatigue strength reduction factor otherwise known as the fatigue notch factor, 

kf, is used in the estimation of fatigue life and strength of structures. Hence, it becomes 

of ultimate importance to develop more accurate methods of estimating fatigue notch 

factor of aero engine materials for reliable fatigue life assessment and prevention of 

disastrous and calamitous fatigue failure of aero engines in service.  



 

8 

 

Figure 1.5. Leading edge of turbine blade showing tiny cooling holes [12] 

 

 

Figure 1.6. Crack Initiation at cooling hole of turbine blade [13] 
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Untill now, finding a brief and economical derivation for kf remains an unsolved 

problem as there is yet to be a commonly accepted expression for kf for different 

conditions. This is because the fatigue notch factor is synonymous to a black box whose 

output is dependent on several input factors such as the material properties, stress 

gradient around the notch root, material imperfections or inherent defects, size and 

geometry of specimen, loading type and the number of loading cycles. However, kf is 

generally defined as the ratio of fatigue strength of a smooth specimen, SS, to that of a 

notched specimen, SN, under the same experimental conditions and same number of 

cycles. 

Different expressions based on different assumptions have been developed for kf 

in the past. The Neuber [14], Kuhn et al. [15], Peterson [16], Heywood [17, 18], Buch 

[19, 20], and Siebel et al. [21] expressions are all based on average stress assumptions. 

The average stress assumption stipulates that fatigue failure will occur given that the 

average stress over a length A, as shown in Figure 1.7, in the vicinity of the notch root is 

equal to a smooth specimen fatigue limit σe in the normal tensile direction σy while R is 

the notch root radius also represented as “”. Other existing expressions for kf include: 

Ting et al. [22] and Yu et al. [23] which are based on fracture mechanics models and 

lastly Sheppard [24] which is based on stress field intensity models. 
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Figure 1.7. Average stress model  

 

The problems with these models are some fundamental drawbacks commonly 

encountered at the design stage. One of these drawbacks is that the fatigue notch factors 

are obtained by conducting series of time consuming and costly experiments on notched 

and smooth specimens. At present, there is no simulation-based methodology for 

modeling the interactive effects of stress/strain field gradients at the notch-root and 

microstructure-scale behavior in predicting notch-root fatigue failure in service loads 

where performance outweighs other considerations. The usual fatigue life prediction 

methods for notches via the fatigue notch factor account for combined effects of notch 

size and notch root plasticity in a relatively primitive fashion and do not incorporate 

explicit sensitivity to the combined effects of microstructure and strength of the notch 

root stress field gradient. The relationship of microstructure to kf, via a constant in 

Peterson’s classical equation [16], has proven to be elusive, while the former issue (finite 

volume for damage process zone) addresses a key physical aspect of the problem, namely 

comparative scales of notch root gradients to characteristic scales of microstructure and 
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distributed cyclic microplasticity. Recent approaches have been developed to incorporate 

these finite process zone effects at notches [25, 26], but are deterministic and do not 

address the role of microstructure explicitly.  It is therefore very difficult to link the kf 

obtained using these methods to the realistic microstructure of the material such as grain 

size, grain orientation, presence of inclusion, and the notch root geometry.   

A predictive basis for nucleation and propagation of small crack dependency on 

notch size effects which can only be possible by the holistic treatment of the plastic strain 

field gradients, notch root stress and intrinsic scales of grains and other material attributes 

is yet to be developed. Owolabi et al. [27, 28] recently developed a probabilistic 

framework based on weakest link and extreme-value statistics where elements of crystal 

plasticity were combined with new probabilistic methods for notch sensitivity based on 

computed slip at the notch root within a well-defined fatigue damage process zone for 

homogenous oxygen free high conductivity copper (OFHC).  

The purpose of this work is to extend the recently developed probabilistic 

framework based on weakest link and extreme-value statistics to heterogeneous 

multiphase aero-engine materials such as titanium alloy and nickel-base superalloy. The 

concept of fatigue notch factor, the ratio of unnotched to notched specimen fatigue 

strength in the HCF regime (or equivalently the notch sensitivity index), will effectively 

be extended to incorporate microstructure sensitivity via probabilistic arguments. The 

approach to be used in this work will combine elements of crystal plasticity with new 

probabilistic approaches for notch sensitivity based on slip distributions in the 

microstructure at the notch root. The framework to be developed will incorporate 

information regarding not only the peak stress but also the stress gradient relative to 
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microstructure length scales for turbine engine materials. It will also account for other 

competing damage mechanisms such as inclusion in aero-engine materials. This approach 

can reduce the amount of testing required to make design decisions on material or 

component reliability by systematically estimating the scatter of fatigue life associated 

with microstructure variations through the use of simulations.  

      It is significant to note that fatigue notch factor and associated notch 

sensitivity index are not well quantified beyond the level of the ratio of average remote 

applied stress amplitudes corresponding to unnotched and notched specimens at a given 

HCF life, requiring the designer to apply a safety factor to account for uncertainty 

associated with material condition or microstructure variability. However, using an 

exorbitant factor of safety to account for uncertainties for fatigue design of engineering 

components under service loads is no longer an acceptable approach in many safety-

critical applications. The uniqueness of this task is that it will combine elements from 

microstructure-sensitive crystal plasticity models for alloys used in safety critical 

components with a nonlocal probabilistic mesomechanics framework for fatigue strength 

reduction and the probabilities of formation and growth of small cracks at notches that 

depends on microstructure features (i.e., grain size, phase distribution, composition, 

pores, inclusions, etc.). To this point, most traditional fatigue design tools for components 

with notches have only implicitly reflected the role of materials microstructures. 

The resulting methods will be of significant utility to large scale industries such as 

the aerospace industry in fatigue life prediction strategies and assessment of alloys in 

notch resistance. 
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1.3 Thesis Outline 

  To accomplish the objectives of this thesis, the following tasks were carried out: 

1. Chapter 2 gives a literature review to the thesis. An overview of fatigue, fatigue notch 

factor and different stages and regimes of fatigue are presented. The various existing 

expressions for fatigue notch factor are also examined and analyzed for their limitations.   

2. In Chapter 3, the material structures of IN100 nickel base super alloy and Ti-6Al-4V 

titanium alloy are discussed. Crystal plasticity constitutive models and finite element 

implementation for the two materials are also discussed.  

3. Chapter 4 describes the finite element models, the probabilistic framework developed, 

and the associated fatigue notch factor based on probabilistic arguments.  

4. Chapter 5 presents the result and discussion  

5. Chapter 6 gives a general summary of the thesis and offers recommendations for future 

work 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1  Stress Concentration Factor 

 Notches and discontinuities in materials serve as areas of stress concentration 

which make the local stress in the vicinity of the notch root to be higher than the applied 

remote stress (Figure 2.1).  

 

Figure 2.1. Stress distributions in a notched specimen. 
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The ratio of the peak stress at the notch root to the remotely applied stress is referred to as 

stress concentration factor (kt) in linear elastic material and it is used to characterize 

notch severity.  

 
peak

tk
S


                                                                2.1 

tk  is dependent on the mode of loading (tensile, bending, torsional, etc.) and the 

geometry of the component. Neuber [29] determined the theoretical stress concentration 

factors for deep hyperbolic notch and shallow elliptical notch in infinitely wide material 

under bending, shear and tension mode of loading. A comprehensive list of 

experimentally determined stress concentration factors for different geometries and 

loading can be found in Peterson’s stress concentration factor book [30].  

 Although, it is very simple to obtain the maximum stress and fatigue life of 

notched components using kt, it is well known that kt under-estimates the fatigue life and 

thus fatigue notch factor kf is generally used in predicting fatigue life of notched 

components as it gives more accurate result.  

 

2.2  Fatigue Notch Factor 

The peak stress at the notch root of a notched component is not solely responsible 

for the fatigue behavior of the component. In general, if only the peak stress at the notch 

root is considered, then the fatigue strength of a notched component is greater than that of 

a smooth specimen with the same stress uniformly distributed across the cross section [1]. 

In the past, researchers have attributed this phenomenon to the fact that the stresses and 

strains distribution over a critical volume in a material dictates the fatigue behavior of the 
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material. Based on experimental data accumulated over years, expression for predicting 

the fatigue behavior of notched component based on smooth component fatigue behavior 

was developed. In general, the fatigue notch factor, kf is defined as the ratio of fatigue 

strength of a smooth specimen, SS, to that of a notched specimen, SN, under the same 

number of cycles and experimental conditions; generally a fully reversed loading 

condition with load ratio R= -1, given as:  

  
 strength of smooth specimen, S

fatigue stength of notched specimen, S

S
f

N

fatigue
k                              2.2                                                  

 The range of value for the fatigue notch factor kf is usually given as 1 < kf < kt 

indicating the over conservative nature of kt when used in fatigue life prediction or notch 

sensitivity description. Another quantity used for describing the behavior of notched 

component is the notch sensitivity index, q, which indicates sensitivity of materials to 

notches. The notch sensitivity index, q, which also gives the relationship between the 

fatigue notch factor kf and the elastic stress concentration factor kt is given as:  

 
1

1

f

t

k
q

k





                                                        2.3                                                                      

The range of value for notch sensitivity index q is 0 < q < 1. When q = 0, this implies that 

the material is not sensitive to notch and kf = 1. When q = 1, i.e kf = kt, this implies that 

the material is fully notch sensitive and that the behavior is dictated solely by the local 

notch root stress. 

2.3  Factors Affecting Fatigue Strength of Materials  

Different factors have been identified to affect the fatigue strength or fatigue 

notch factor of a material [31]. Some of these factors include: material inherent defects 
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[32], loading type [32], material properties, geometry of specimen, number of loading 

cycles, size of notch and notch root stress gradient [19, 33, 34], etc. Dabayeh et al. [32] 

investigated the effect of flaw at the notch root on the fatigue life of a material. Notched 

cast aluminum alloy 319 of notch sizes 1.0 mm, 3.0 mm, and 6.0 mm having natural flaw 

at the center of the notch root were subjected to constant and variable amplitude loading 

to determine their fatigue strength. Dabayeh et al. concluded that the presence of flaws at 

the notch root of cast Al 319 resulted in reduction of the fatigue strength of the aluminum 

alloy. Dabayeh et al. also investigated the effects of constant amplitude loading and 

variable amplitude loading on the fatigue life of the same material. The result of their 

experiment shows that material subjected to constant amplitude loading can withstand 

more strain amplitude than a material subjected to variable amplitude loading at the same 

number of cycles to failure as depicted in Figure 2.2. 
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Figure 2.2.Constant and variable amplitude strain-life curves for hipped Al319 [32] 

 

Kristoffer et al. [35] investigated the effect of random defects on the fatigue notch 

factor of at different stress ratios. Here, fatigue crack growth simulations were performed 

for defects, treated as cracks, of different sizes randomly distributed in the specimen. The 

conclusion reached by Kristoffer et al. is that the defect size distribution couple with the 

defect density has influence on the fatigue limit distribution and consequently the fatigue 

notch factor distribution.    

Neuber [29] has shown that notches in material serves as areas of stress 

concentration causing high localized stress at the notch root thus leading to reduced 
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fatigue strength when such material is subjected to fatigue loading. George et al. [5], 

Weiju et al. [26] and Cheng et al. [36] have all investigated notch size effects on fatigue 

behavior of notched component subjected to fatigue loading. Past researches by Benedetti 

et al. [37] and Teh et al. [38] have established that the fatigue strength of a notched 

component depends on the stress distribution in the vicinity of the notch. Other 

researchers who have also suggested that the stress gradient in a notched component 

plays a significant role in the fatigue process of the component include: Buch [19], 

Neuber [29] and Peterson [16].  

2.4  Existing Expressions for Fatigue Notch Factor 

Different expressions for the fatigue notch factor have been developed by 

researchers based on certain assumptions. Some of the most popular expressions include: 

the stress field intensity (SFI) model, the average stress (AS) model, and the fracture 

mechanics (FM) model.  

The average stress model is based on the assumption that fatigue failure will 

occur when the average stress over a length A measured from the notch root of a notched 

specimen is the same as the fatigue limit σe of a smooth specimen. Based on this 

assumption, Kuhn and Hardraht [39] give the expression (KH model) for Kf  as: 

 
1

1

1

T
f

K
K

A

  


 




                                                       2.4 

Where  is the notch root radius,  is the notch angle, and A is a material constant.  

Neuber [40] modified the KH model to give the NKH model expressed as  
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f
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K

a




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

                                                       2.5 

Here ( )ba f   and is a material constant, 
b is the material tensile strength.  

Peterson [16] developed a special type of the average stress model called a point stress 

model with the assumption that the stress field around the notch root drops linearly and 

expressed Kf as following: 

 
1

1

1

T
f

K
K

a




 

 
  
 

                                                       2.6 

where  is the notch root radius and “a” is a material constant.  

Heywood [18] developed another expression for Kf based on intrinsic defects given as: 
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f

K
K

a







                                                       2.7 

where a is material dependent (material constant). 

Buch [19, 20] based on the consideration of stress gradient developed a two parameters 

expression for Kf given as: 

 
0

2.1
1

f T

h

K K
A

 

 
 

                                                  2.8 
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where A and h are dependent on the material and type of specimen while 
0  is a function 

of A and h. The shortcoming of the average stress models for predicting fatigue notch 

factor is that they fail to explicitly account for notch size effects, stress/strain gradient 

and also microstructural inhomogeneity of the material [27, 35]. 

Stress field intensity model is based on the assumption that the fatigue strength of 

a material does not depend only on the peak stress at the notch root but also on the stress-

field intensity in the damaged zone shown in Figure 2.3.  

 

Figure 2.3. Stress Field Intensity Model [31] 

 

The stress field intensity approach deals with stress field intensity function FI  

defined according to Yao [41, 31] as follows: 

    
1

FI ijf r dv
V

  


                                                      2.9                                              
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where Ω is the fatigue damage zone, V is the volume of the fatigue damage zone,  ijf 

is the equivalent stress function, and  r  is the weight function. According to the stress 

field intensity approach assumption, the stress field intensity in an un-notched specimen 

is the same as its fatigue strength namely:  

 0

FI eS                                                               2.10 

where Se is the endurance limit of the material 

The stress field intensity for notched specimen is given as:  

    
1N

FI ijf r dv
V

  


                                                   2.11 

Given the stress tensor σij as a function of applied stress, i.e 

  ij ij NS                                                           2.12 

and the equivalent stress function as  

    ij

ij
N

f
f

S


                                                     2.13 

Substituting Equations (2.16) and (2.17) into Equation (2.15) yields: 

    N N
FI ij

S
f r dv

V
  


                                                2.14 

The fatigue notch factor is thus calculated using:  

    
1e

f ij

N

S
k f r dv

S V
 


                                      2.15 
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This method offers improvement over the local hot spot method of determining fatigue 

notch factor as it captures the effect of the stress/strain gradient at the notch root. 

However, it has the short coming of not clearly defining the fatigue damage zone Ω.  

 The fracture mechanics model operates on the assumption that crack initiates at 

the notch but becomes non-propagating at length ath (Figure 2.4). Frost and Phillips [39] 

pioneered the application of fracture mechanics to study notched specimens fatigue 

strength.  

 

Figure 2.4. Fracture Mechanics Model [31] 

Ting and Lawrence [42] developed a crack closure at a notch (CCN) model given as  

 c
f

th

S
K

S





                                                             2.16 
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where 
cS is a smooth specimen fatigue limit stress range and 

thS  is the threshold stress 

range. 

For smooth specimen and notched specimen, the effective threshold stress intensity factor 

range , 0eff thK  is given respectively as: 

 
, 0 0 0eff th th cK U S l                                              2.17 

  , 0 ( )eff th th th th thK U Y a S D a                                2.18 

where 0thU  is the effective threshold stress intensity factor for a long crack, thU is the 

effective threshold stress intensity for ath crack length, and Y(ath) represents the geometry 

factor for the stress intensity factor. Equating Equation (2.21) to (2.22) which is the 

assumption for fatigue failure to occur, we have the following expression for Kf: 
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 
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                                                                   2.19 

where l0 is the smooth specimen intrinsic crack length, D is the notch depth, and ath is the 

maximum length of non-propagating (short) crack.  

The FM model is best suited for predicting Kf at infinite fatigue life thus it becomes 

difficult to use since Kf is not limited only to infinite fatigue life. Also, the FM model 

uses stress field intensity factors estimates which might be difficult to obtain for 

complicated geometries.  

A comprehensive summary of the different existing model for fatigue notch factor is 

presented in Table 2.1 as obtained from Yao et al. [31] 
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Table 2.1 

Comprehensive summary of existing expressions for Kf [31] 

Authors Abbreviation Expression Material 

Parameters 

Average stress models 

Neuber, Kuhn 

and Hardraht 

NKH 
 

1
1

1

T
f

K
K

a




 



  
( )ba f  is the 

function of 

ultimate stress 

Peterson P 
 

1
1

1

T
f

K
K

a




 



  
a is a material 

constant 

Heywood H 
 

1 2

T
f

K
K

a







  
( )ba f   

depends on 

material and 

specimen 

Buch B 

 0

1 2.1

( )f T

h

K K
A

 



   

A, h depend on 

materials and 

specimen, 0 is a 

function of A 

and h 

Stieler and 

Siebel 

SS 
 

1 1

T
f

K
K

a


 
  0.2( )a f   is a 

material constant 

Wang and 

Zhao 

WZ 
 

0.88

T
f b

K
K

A



  

A, b are material 

constants 

Fracture mechanics models  

Ting and 

Lawrence 

TL 

 

*

0

* * *
*

0 0

( ) 1
eff

f th th

th

f th

th

D
K Y a a a

l

U Y a D a
K a a

U l

 
   

 
 


 

  

0l is the intrinsic 

crack length, 

0thU  is effective 

threshold stress 

intensity ratio 

for a long crack 

Yu, 

DuQuesnay 

and Topper 

YDT For sharp notch:  

 
0

1
1f

D
K

F l

 
   

 

  

  and  are 

the local stress 

and strain range 

 at notch root  

CONTINUED 
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For blunt notch :  

 T c
f

K S
K

E 




 
  

Zu, Huang and 

Chen 

ZHC 
1 4.4 / 1.0

1 3.5 / 0.05

f T c

f T c

b
K K C

a

b
K K C

a





 
   

 

 
   

 

  

cC is critical 

crack length, a 

and b are semi-

axle of an ellipse      

Stress field intensity models  

Yao Weixing 

and Gu Yi 

YG 
    

1
.f ijK f r dv

V
 


    

Stress field 

domain Ω is a 

material constant 

Sheppard S 
 

ave M
f

N

K
S


   

M is stress field 

domain 

 

2.5  Probabilistic Framework  

One major problem common with fatigue research is the scatter in fatigue life or 

fatigue strength for similar experiments conducted under the same operating conditions. 

To account for scatters commonly encountered in HCF, various probabilistic methods 

have been developed. Weakest link theory, first proposed by Weibull in 1939 [43, 44] 

remains one of the most widely used probabilistic approaches in fatigue. Subsequent 

works on the theory include Bomas et al. [45] on a bearing steel and Hild and Roux [46] 

on a nodular cast iron. They both used the probabilistic approach to explain the effect of 

defect distribution on fatigue strength. The weakest-link theory basic assumption is the 

existence of statistically distributed defects at the surface or in the material volume and 

the occurrence of crack initiation at the largest defect. The defects can be in the form of 

inclusions, voids, or microcracks which contribute to fatigue failure [47, 48, 49]. 

Furthermore, this theory is based on a number of hypotheses [45]: the entire material is 

considered as a combination of links, formation of crack in a link induces the crack of the 

Table 2.1 (Continued) 
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entire structure, it is assumed that there are no interaction between defects i.e the defects 

size is very small compared to inter-defect distance. The model hypothesis assuming no 

inter-defect interaction is reasonable only if we consider the initiation of fatigue crack 

and not crack propagation and this buttress the second hypothesis.  

 

2.5.1 Probabilistic Framework without Inclusion  

As discussed in the preceding section, most probabilistic approaches already 

developed by researchers consider the physical defect distribution such as inclusions, 

pores or microcracks that contribute to failure [48, 47, 49]. However, there are other 

approaches which consider the distribution of microvoids [50] or microplasticity [51]. 

According to the hypotheses on which the weakest link theory is based, given a structure 

with volumeV , the probability of success, SP , of the structure under uniaxial stress  can 

be expressed as a function of probabilities of success of all the elementary/individual 

volumes of material ,e iV making up the structure and it is given as: 

    ,

1

, ,
i k

s s e i

i

P V P V 




                                            2.20 

  The weakest link theory assumes that the probabilities of success of two separate 

sub volumes, ,1eV  and ,2eV , are independent, that is, there are no interaction between 

critically-stressed elementary volumes. In other words, it is assumed that there are no 

interaction between defects i.e the defects size is very small compared to inter-defect 

distance. This assumption is best suited for high cycle fatigue regime, where scatter of 

heterogeneous microplasticity in the fatigue specimen is a common occurrence. The 

probability of success of the two sub volumes is thus given as:  
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      ,1 ,2 ,1 ,2s e e s e s eP V V P V P V                                        2.21 

If the sizes of the elementary volume or sub volumes tend to zero, the weakest link theory 

holds that the probability of failure of a series of links with random threshold stresses can 

be expressed as [52]: 

     ,1 1 expf s i e i

i

P V P V V
 

     
 
                               2.22 

    1 exp , ,f

v

P V x y z dV
 

   
 
                                  2.23 

where 
i characterizes the probability of failure of each sub volume ,e iV , and  , ,x y z is 

the density function of the probability of failure of the material which is dependent on the 

stress . The analytic expression for the density factor was introduced by Weibull for 

three-parameter weibull distribution as [53]:  

  0

0

1
, ,

m

u

x y z
V

 




  
  

 
                                          2.24 

where 0V is the reference volume, 0 is the location parameter or a threshold stress below 

which damage does not occur, m is the shape parameter or Weibull slope, u is the scale 

parameter and the Macaulay brackets indicate that a a if 0a  and 0a  if 0a  .  

According to Weibull [43, 44], the probability of failure is given as:  

   0

0

1
, 1 exp

m
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     
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Equivalent stress, such as Von Mises or Tresca, or maximum principal stress can be used 

as the value of  in the equation.  Different variations of Equation 2.25 have been used 

extensively by various researchers to model the variability of fatigue strength.  

Doudard et al. [51], based on the approach proposed by Lemaitre et al. [54, 55], 

developed a probabilistic two-scale model for high cycle fatigue that not only account for 

failure of material but also the thermal effects during cyclic loadings. The approach 

assumes that microscopic yield stress is a probabilistic variable and defined the failure 

probability of a domain, , of volume,V ,subjected to homogeneous stress amplitude 

 as equal to the likelihood of finding at least one active inclusion within the volumeV  

and is expressed as: 
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                                              2.26 

where m and 0 0

mV S  are Weibull parameter,  maxF   and mH is the stress 

heterogeneity factor and it is given as: 

 1
m

m

F

H dV
V

 
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 

                                               2.27 

Different S/N curves prediction by the model for different effective volumes 

corresponding to bending and axial fatigue tests have been validated.  

Wormsen et al. [56, 57], adopted a two-parameter Weibull distribution and based on a 

defect-tolerant-approach, developed an expression for probability of failure given as: 
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where *

0S and
sb are the Weibull scale and shape parameters, 

netS is the net nominal stress, 

0V is the gauge volume, and 
wK is the Weibull stress factor given as: 
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Wormsen et al. [56] also developed an expression for the fatigue notch factor of a 

component by comparing the fatigue strength
netS , of the an arbitrary component of 

volumeV with the fatigue strength of a standard specimen ,0netS of volume 
0V at the same 

number of cycles and probability of survival and is given as: 

 
 

,0

1

0

s

net
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w

S
S

K V V
                                                   2.30 

The denominator of the expression in Equation 2.30 is referred to as the fatigue notch 

factor of the component, i.e.: 

  
1

0

sb

f WK K V V                                                   2.31 

  The new approach was applied to three materials; forged steel, cast steel and 

aluminum alloys and parameter estimation was carried out using large quantity of 

experimental high cycle fatigue data. It was noticed that the estimated shape parameter sb

for cast steels is less than that of forged steels. This is attributed to the greater probability 

of finding larger defect in a cast steel.  

Owolabi et al. [27] employed statistical distribution of the nonlocal Fatemi-Socie 

critical plane fatigue indicator parameter within a well-defined damage process zone as a 

basis of comparison for the fatigue susceptibility of various microstructure and a means 

of predicting the probability of failure over polycrystalline oxygen-free high thermal 



 

31 

conductivity (OFHC) copper ensemble of grains. The proposed probabilistic framework 

focused on the formation of fatigue crack at a single grain scale and thus most suited for 

high cycle fatigue and very high cycle fatigue where crack formation nearly solely 

account for the total fatigue life. Using Weibull weakest link theory, the resulting 

probability of failure based on statistical distribution of fatigue indicator parameter is 

given as: 
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where 
0V  is the reference smooth specimen volume, dV is the volume of the damage 

process zone, 0 and b are the Weibull scale and shape parameters, th is the 

threshold fatigue indicator parameter below which no microdamage will occur, and  is 

the Fatemi-Socie critical plane fatigue indicator parameter expressed as:  
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where k  is a coefficient that moderates the effect of normal stress to the plane of 

maximum plastic shear strain, 
*

max

p is the nonlocal plastic shear strain amplitude, y is 

the cyclic yield strength, and 
*max

n is the nonlocal peak stress acting perpendicular to the 

plane of the maximum plastic shear strain range.   

Based on the proposed probabilistic framework, Owolabi et al. [27] also 

developed a microstructure sensitive fatigue notch factor expressed as: 
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where K 


is a new microscopic concentration factor which is dependent on the 

microstructure introduced by Owolabi et al. and expressed as:  
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The fatigue notch factor developed is thus identical to the conventional fatigue notch 

factor, which is the ratio of unnotched to notched values of the identified driving force for 

a given high cycle fatigue life. However, a probabilistic argument based on the 

distribution of the fatigue indicator parameter in the damage process zone is assumed 

here. The trend of the notch sensitivity index determined for OFHC copper using the new 

microscopic concentration factor and the newly developed microstructure sensitive 

fatigue notch factor are similar to the trend in notch sensitivity index based on 

experimentally measured fatigue notch factor.  

De Jesus et al. [58] proposed a probabilistic strain-life based Weibull model 

where the total strain amplitude , a , for a given lifetime and the fatigue life, fN , for a  

given strain amplitude, are the statistically distributed variables. The model assumed 

crack initiation as the dominating fatigue damaging process in riveted connections 

investigated which is in agreement with earlier findings by Iman B. [59]. Based on the 

application of the Weibull weakest link theory, the proposed probability of failure is 

given as:  
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 where 
0N is the threshold value of lifetime, 

0a is the endurance limit of 
a ,  is a 

parameter defining the position of the corresponding zero percentile curve,  is the scale 

parameter, and   is the shape parameter.  De Jesus et al. [58] employed Neuber [60] and 

Molski and Glinka [61] rules in determining the local stresses and strains in the vicinity 

of the notch root and modeled the elastoplastic response as a Simple Ramberg-Osgood 

[62] stress-strain response.   

 Kristoffer et al. [35] investigated the effects of random defects on fatigue notch 

factor of a notched member. To get accurate fatigue predictions, the authors describe 

defect size distributions in the component using a generalized extreme value with the 

distribution given as: 
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                          2.37 

where   is the shape parameter, *

0a  is the location parameter, and 0a is the scale 

parameter. The randomly distributed defects are placed in the material and treated as 

cracks using software called P.FAT. The software is also used for post-processing. 

Among the methods of estimating fatigue notch factor considered by the authors is the 

Weibull weakest link method. The probability of failure based on the weakest link theory 

was given as:  
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where eff is the effective fatigue stress using Crossland criterion [63], th is a threshold 

stress, refV is the reference volume, m is a parameter describing the scatter, and u is the 



 

34 

location parameter.  The fatigue life of the components is determined using P.FAT at 

50% probability of failure and the associated fatigue notch factor is determined using: 
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where ,e smooth is the fatigue is limit of a smooth specimen and ,e notched is the fatigue limit 

for a notched specimen. 

 

2.5.2 Probabilistic Framework with Inclusion 

Investigating defect interaction is important in fatigue damage of components 

having significant defects in the form of pores or inclusions. Hild [64] and Chantier [65] 

have shown that presence of initial casting flaws that are more or less randomly 

distributed in cast component generally reduces the fatigue strength of the component as 

microcracks propagate from these initial flaws under cyclic loading. Also, Hyzak and 

Bernstein [66, 67] have established the important roles played by inclusion in the 

propagation and formation of fatigue crack in nickel base superalloys while considering 

two powder metallurgy (PM) nickel base superalloys. These inclusions can either be on 

the surface, called surface inclusions, or they can be in the material and referred to as 

bulk inclusions. Surface inclusions are more damaging and detrimental than bulk 

inclusions for a material subjected to low cycle fatigue [67, 66, 68]. It can therefore be 

said that the probability of failure of a nickel base superalloy and other materials 

containing inclusion will be largely dependent on the probability of initiating and 

propagating cracks due to surface and bulk inclusions.   



 

35 

Based on the known mechanism for microscopic initiation and propagation of 

cracks in direct-aged IN718 (DA 718), Deyber et al. [69]  proposed a probabilistic 

framework using statistical distribution of particle size. The authors considered two 

different modes of fatigue crack initiation in the DA 718: Fatigue micro-crack formation 

on second phase particles (carbides and nitrides) of less than 10 m  grain size and 

transgranular stage I initiation of fatigue crack along favorably oriented slip bands.  The 

resulting probability of failure based on crack formation at particle interfaces is given as: 
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                                      2.40 

where 
1 is the maximum principal stress, is the particle shape factor, eq is the 

equivalent Mises stress, y is the yield stress, 0 is the scaling parameter, and the 

Macaulay brackets  indicate that  if 0 and 0 if 0a a a a a    . Deyber et al. [69] 

also proposed a model for crack propagation based on Tomkins model [70] i.e.  
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where T is the ultimate tensile stress in the damage process zone of the crack, p is the 

plastic strain amplitude,  is the maximum principal stress amplitude.  Based on the 

model, the probability that a particle of diameter 0D will propagate, in a potential number 

of cycles ( 0N ), was determined. The probability of failure is therefore equal to the 

probability of finding a particle of size greater that the potential particle size, 0D . The 

overall global probability of failure is thus the combined product of the probabilities of 

failure at the surface, subsurface and within the bulk of the material and it is given as: 
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 where  f dP  is given in Equation 2.35,   P elN and N are the number of particles 

contained in the meshed elements in each location (surface, subsurface and bulk). 

Also, based on known microstructure of PM nickel base superalloy, Pineau [71] proposed 

a probabilistic framework that employs the statistical distribution of inclusion sizes to 

determine probability of failure of different components. The proposed model considers 

both surface and volume defects and the propagation of defects to a critical size. The 

resulting probability that any one inclusion intercept a free surface for uniform size 

distribution of spherical inclusion is given as [71]: 
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where D is the inclusion diameter, S is the highly stressed surface area, V is the volume 

of the specimen, and n is the number of inclusions per unit volume. However, for varying 

inclusion sizes grouped into classes, the probability that inclusion of size class k intercept 

a free surface for distribution of inclusions sizes is given as: 
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 Pineau [71] used the proposed approach to estimate the probability of failure of three 

different sized components made from Rene 95 and established that probability of failure 

is highly size dependent.  
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2.5.3 Probabilistic Framework under Multiaxial Loading  

Based on the fact that fatigue crack initiates and propagate on favorable “critical” 

slip planes, different attempts have been made by researchers in developing and studying 

multiaxial theories. A comprehensive summary of the different existing multiaxial fatigue 

models is contained in Kallmeyer et al. [72]. Theoretically, crack opening is driven by the 

normal stress and thus reduces the friction between crack surfaces while crack 

propagation is driven by the resolved shear stress on the dominant slip plane under stage 

1 propagation. Attempts have been made by researchers to estimate the failure probability 

of specimen under complex non-proportional and multiaxial loadings by incorporating 

these multiaxial fatigues models into the Weibull models.  

Existing probabilistic framework models account for stress heterogeneity effect 

using the concept of effective volume. Doudard et al. [73] extended this concept to 

account for multiaxial loading histories in high cycle fatigue by introducing a factor to 

represent the distribution of activated slip directions and also captures the variability of 

the activation level. Here, it is assumed that the critical shear stress is a random variable. 

In this approach, it is assumed that slip directions become active when the shear stress 

amplitude Ta exceeds the critical yield strength. Doudard et al. used Poisson point process 

[74, 75] to describe the activation and the average density of active sites λ is given as: 
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where m and 0 0

mV S   are material-dependent parameters.  

Equation 2.45 is integrated over all possible angles to account for all the space directions 

defined by the solid angle . This model is identical to the Weibull law. However, 

Weibull uses the normal stress instead of the shear amplitude in describing material 
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failure.  Doudard et al. defined the probability Pk, (within a domain Ω of volume V) of 

finding k active sites as; 
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where  N   is the average number of active sites given as; 

  N V                                                               2.47 

The resulting probability of failure Pf is given as; 
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This probabilistic framework can be used for both non-proportional loadings and 

multiaxial loading. It also accounts for scatter in HCF fatigue data through the 

distribution of the slip system and the variability in the slip system activation level. 

Flaceliere and Morel [76] developed on the endurance criterion proposed by 

Papadopoulos [77] and defined equivalent stress as a function of the quadratic mean 

value of resolved shear stress Ta and the maximum hydrostatic pressure as; 
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M p                                                    2.49 

where M  is the quadratic mean value of resolved shear stress aT , p is the coefficient 

reflecting the sensitivity to hydrostatic stress and 
,maxH is the maximum hydrostatic 

pressure over a loading period.  This equivalent stress is applicable to any complex stress 

states (in-phase or out of phase loading). Therefore, the probability of failure is given as; 
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where 
0V is the reference volume and 

0 is the damage threshold stress level. Flaceliere 

and Morel [76] also investigated the stress gradient and surface effects in probabilistic 

fatigue failure. Based on Papadopoulos proposal [33], they used an equivalent stress 

function dependent on the normalized gradient of the maximum hydrostatic stress given 

as; 
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with  
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n is a constant assumed to be 1 while  is a normalized hydrostatic stress intensity factor.  

The surface stress Weibull function is then defined as; 
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where 0S is the reference surface area and   , ,max,eq S HG    is as given in Equation 

2.26. The authors demonstrated a good correlation between the surface model approach 

and the experimentally determined failure probability for GS52 nodular cast iron and C36 

mild steel. However, wide discrepancies were noted between the surface and volume 

approaches when applied to the nodular cast iron due to the presence of pores ranging in 

size from 50-1000 m  [76]. 

 Thomas et al. [78] developed a probabilistic approach for high cycle multiaxial 

fatigue by the combination of a three- parameter Weibull distribution with the 

deterministic energy-based and volumetric high-cycle multiaxial fatigue criterion 
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proposed by Banvillet et al. [79, 80]. To account for the multiaxiality of the stresses, the 

Weibull stress is replaced by the strain work density per loading cycle. The resulting 

failure probability is given as; 
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where 
0V is the reference volume, gW is the strain work density given to the material per 

loading period, 
*

gW is the threshold value of gW , uW is a scale parameter and m is the 

Weibull slope. The predictions by the proposed probability framework are in good 

agreement with experimental probability distribution when applied to five materials 

investigated: the 30NiCrMo16 and 35CrMo4 quenched and tempered steels, the C20 

annealed steel, the EN-GJS800-2 nodular cast iron and the Ti-6Al-4V titanium alloy. 

Thomas et al. [78] also investigated the size-effect which is usually linked to stress-strain 

gradient in high cycle fatigue as shown by Papadopoulos [34] and he gave the probability 

of failure  in fully reversed tension for a smooth component as;  
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where V is the component volume, a  is the normal stress amplitude, E is the young 

modulus, and  
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2.6  Chapter Summary 

This chapter presents a review of the existing probabilistic framework for 

probability of failure and their associated fatigue notch factor where applicable. A 

number of the statistically distributed variables used in constructing the probabilistic 

argument for failure include: distribution of microvoids [50], microplasticity [51], fatigue 

indicator parameter [27], total strain amplitude and fatigue life for a given strain 

amplitude [58] etc. Most of the frameworks considered were developed based on Weibull 

weakest link theory which assumes the existence of statistically distributed defects at the 

surface or in the bulk volume of the material and the occurrence of crack initiation at the 

largest defect. Other hypotheses on which the theory is based include: the material is 

considered as a combination of links, formation of crack in a link induces the crack of the 

entire structure, and lastly it is assumed that there are no interaction between defects. The 

probabilistic frameworks are adjudged more realistic than classical methods of determine 

fatigue notch factor because of their ability to capture the problem of scatter in fatigue 

failure.  
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CHAPTER 3 

 

MATERIALS AND CRYSTAL PLASTICITY MODELING 

 

3.1  Nickel Base Super Alloy  

Nickel base superalloy has been identified as the most suitable material in high 

temperature applications requiring significant resistance to loading under fatigue, creep 

and static conditions [81, 82, 83]. Turbine engine discs are fabricated by machining of 

superalloys forging. The nickel base superalloy billets to be forged can be prepared by 

two different approaches: the conventional ingot metallurgy and the powder processing 

cast and wrought product. The ingot metallurgy procedure involves vacuum induction 

melting, followed by electro-slag refining and vacuum arc remelting; this is then 

followed by annealing to improve the compositional homogeneity of the billets. The 

billets are then thermal-mechanically worked before been subjected to different forging 

operations [84] (Figure 3.1). In general the choice of method to be used is dependent on a 

number of factors but largely on the chemistry of the chosen superalloy [85]. One 

common example of alloys processed by ingot metallurgy is IN718 because the levels of 

its strengthening elements Al, Ti and Nb are relatively low which renders additional cost 

associated with powder processing unjustifiable.   

On the other hand, powder processing involves vacuum induction melting, 

followed by remelting and inert gas atomization to produce powder. Large non metallic 

inclusions are excluded by sieving the powder. The powder is then prepared in billets 

ready for forging by sealing it into a can. It is then degassed and sealed before extrusion 
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(Figure 3.2). When components made of various different chemical constituents are 

involved, powder metallurgy is preferred in order to reduce individual phase segregation.  

However, the presence of nonmetallic ceramic inclusions has been identified as limiting 

factor in the fatigue performance of powder metallurgy nickel base superalloy [66, 67]. 

These inclusions find their way into the molten metal due to spalling or erosion of the 

crucible prior to the gas atomization process for producing the powder [86, 87].  

 

Figure 3.1. Procedural steps of producing turbine disc alloys by ingot metallurgy [88]. 
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Figure 3.2. Procedural steps of producing turbine disc alloys by powder metallurgy 

techniques [88]. 
 

3.1.1 The Physical Metallurgy of Nickel and Its Alloys  

Nickel has atomic number of 28, atomic weight of 58.71 and five stable isotopes. 

It has a face-centered cubic (FCC) structure from room temperature to the melting point, 
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1455 0C , which is the absolute temperature capability of nickel-based superalloys and 

density of 8907 3/kg m . 

The microstructure of a typical superalloy comprises of different phases which include: 

a. The gamma phase, which is denoted by . This forms the matrix phase in which 

other phases resides and it exhibits the FCC structure.  It is made up of elements 

such as cobalt, chromium, molybdenum, ruthenium and rhenium since they prefer 

to reside in this phase.  

b. The gamma prime precipitate, which is denoted by ' . This is rich in elements 

such as titanium, tantalum and aluminum and it forms as a precipitate phase with 

a coherent structure with the matrix  .  

c. Carbides and borides. Carbon and boron combine with reactive elements to form 

MC carbides and borides which prefer to reside on the grain  boundaries.  

Strengthening of the superalloy can be achieved via different modes which include: solid 

solution strengthening of the   matrix and ' precipitates, grain size hardening of 

primary ' precipitates and   matrix and lastly strengthening due to dislocation 

interactions. ' precipitates often have three different size distributions (

1.0,  0.1,  and 0.01 m   in diameter) and are referred to as primary, secondary and 

tertiary precipitates. These precipitates form at different stages of heat treatment; the 

primary ' precipitates form at the first step of heat treatment (subsolvus heat treatment) 

while secondary and tertiary precipitates typically form during cooling and subsequent 

aging.  
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3.1.2 Grain Size Hardening  

 Grain size hardening is linked with variations in grain size and is the most 

commonly experienced hardening mechanism. In IN100, high-angle grain boundaries, 

which serve as sources of dislocation and deformation barriers, are present both between 

'  grains and between the large primary ' precipitates. Using Hall-Petch relation 

[89], the grain size hardening effect on a volume fraction occupied by the grain is given 

as: 

1 22

3
y mfk d                                                               3.1                                                            

where   is the strengthening increment due to grain size hardening, 
md is the average 

grain size, f is the volume fraction occupied by the grain, and yk is the Hall-petch 

constant. In IN100, only 2/3 of the primary '  are in contact with adjacent primary '

precipitate hence the 2/3 in Equation 3.1.  

 

3.1.3 Solid-Solution Strengthening of γ Matrix  

Gypen and Deruyttere [90] proposed a theory for solid solution strengthening of 

nickel matrix. The theory assumes a superposition of strengthening of individual solutes 

which exhibits individual differing potencies [91, 92, 93, 94]. Solute spacing is 

proportional to the square root of concentration. Hence, the strengthening is given as: 
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where 
i

d

dC


is a constant that reflects the strengthening potency of each alloying 

element.  

 

3.1.4 Strengthening Caused by Dislocation Interactions  

When there is shearing of IN100 ' precipitate, the dislocation has to move in pair 

to maintain the ordered 
21L FCC structure of the ' precipitate of IN100. Factors that 

determine the interaction dislocation with the ' precipitate include the size of the 

precipitate and the antiphase boundary (APB) energy (i.e equilibrium spacing of the 

paired dislocations). When the pair of dislocation does not lie within the same precipitate, 

it is referred to as weak pair coupling (Figure 3.3a). When the pair of dislocation lie 

within the same precipitate (for large precipitates) it is referred to as strong pair coupling 

(Figure 3.3b). In both cases, the formation of APB is responsible for the strengthening 

increment. The schematic representation of the comparison of required stress to drive a 

pair of dislocation through the precipitate as a function of precipitate size for the two 

cases is presented in Figure 3.3c.   
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Figure 3.3. (a) weak pair coupling configuration of dislocations and precipitates, (b) 

strong pair coupling configuration of dislocations and precipitates, and (c) Stress required 

to drive dislocation as a function of the precipitate size [95]. 

 

3.2 Key Material Microstructure and Composition of IN100 

Over the years, attempts have been made to optimize the range of mechanical 

properties of polycrystalline superalloys of complex microstructure used for turbine disk 

applications [96, 97, 98, 99]. IN100 has a very complex microstructure, consisting of 

over ten constituent elements (Table 3.1) and is often developed using powder metallurgy 

techniques. The typical heat treatment procedure for IN100 is as given in Figure 3.4. The 
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heat treatment involve subsolvus or supersolvus heat treatment at 1185 0C , this is 

followed by stabilization and aging heat treatment. The final microstructure of the alloy is 

established by these three heat treatments.   

Table 3.1 

 

Chemical Composition of IN100 and Its Phases [100] 

 

Alloy/Phase Ni Al Cr Co Mo Ti V Fe C Zr B 

IN100 56.0 4.9 12.3 18.3 3.3 4.3 0.70 0.10 0.06 0.02 0.02 

  matrix 38.7 2.25 24.5 27.8 5.73 0.93 0.05 - - - - 

'  ppt 71.8 7.06 2.59 8.94 1.42 6.97 1.23 - - - - 

 

 

Figure 3.4. Typical heat treatment process for Nickel base Sueperalloy [100]. 
 

The deformation mechanism for IN100 at the microstructure is similar for other 

nickel base superalloys and can be summarized as follows [101]:  
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1. As the temperature increases, the yield strength also increase for both tension and 

compression up to a peak temperature of 750 0C , beyond which the yield strength 

decreases (Figure 3.5). 

 

Figure 3.5. Variation of yield strength of Nickel base super alloy with temperature in the 

longitudnal (001) orientation [102]. 
 

2.  Generally, slip is dictated by the resolved shear stresses in the favorable 

crystallographic slip planes. However, Schmid’s law is not obeyed in all 

orientations; orientations with similar Schmid factor (e.g <001> and <011>) have 

different yield strength. Also, slip on any plane can also be a function of the 

resolved stresses on other planes resulting from dislocation core propagating 

effects in the ' .  
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3. For the different orientations (<001>, <011> and <111>), the yield strength differ 

at a given temperature in tension and compression over a certain temperature 

range. This asymmetry (magnitude and sense) depend on both temperature and 

orientation [103, 104, 105, 106, 107]. The <001> is stronger in tension compared 

to compression, while for <011> and <111> they are stronger in compression 

compared to tension. This tension- compression asymmetry is most conspicuous 

between room temperature and peak temperature range while it is less obvious at 

higher and lower temperatures.  

4. Stress-strain curves exhibit a unique transition to plasticity especially at the two 

extreme temperatures (highest and lowest temperatures). The hardening effect on 

the yield strength is reversible with increasing temperature. A sample first 

deformed at high temperature with high yield strength and then deformed at low 

temperature will exhibit a material response similar to a virgin material deformed 

at the lower temperature [108]. 

All these mechanisms must be accounted for by the constitutive equations that will be 

used to model the deformation of the superalloy.  

 

3.3  Crystal Plasticity Modeling of Nickel Base Super Alloy  

A crystal plasticity constitutive model developed by Mahesh [102] is used in this 

work. The model captures the orientation dependent material response and it is rate 

dependent and microstructure sensitive. Rate dependent method is employed for the 

model because as the temperature increases, strain rate effects become increasingly 

important. Physically-based hardening models are employed on the basis of dislocation-
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precipitate interactions already discussed under strengthening caused by dislocation 

interactions.  

From a continuum mechanics point of view [109, 110, 111, 112, 113, 114, 115] 

and from a material science point of view [116, 117, 118], the deformation of the crystal 

is taken as the cumulative effect of two independent atomic mechanisms (Figure 3.6): (a) 

elastic distortion of the lattice denoted by Fe  and (b) plastic deformation Fp which does 

not disturb the geometry of the lattice. The elastic portion accounts for both the reversible 

elastic stretch and the rigid body lattice rotation while the plastic portion accounts for 

dislocation glides along the crystallographic planes. The plastic deformation is associated 

with the change in grain shape but not its crystal lattice and it is formed due to dislocation 

motion.    

 

Figure 3.6. Elastic-plastic decomposition of the deformation gradient [109, 119] 
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The governing variables of the constitutive model are: (a) deformation gradient, F

, (b) 2nd Piola Kirchhoff stress, 2pk , (c) crystal slip systems labeled by integers,  , (d) 

slip system unit normal, s ,  to the slip plane, (e) unit vector, m , which gives the slip 

direction, (f) plastic gradient of deformation, Fp , with  det F 1p  , (g) slip resistance or 

threshold for slip system, K , with unit of stress, and (h) the back stress or slip system 

kinematic stress,  .  

A multiplicative rule is employed for the decomposition of the deformation gradient, F , 

and it is given as [109, 119]:   

 F F Fe p                                                                       3.3 

Since incompressibility is maintained in the dislocation glide (i.e  det F 1p  ), the 

stress power per unit reference volume of the isoclinic relaxed configuration determined 

by Fp is given as: 

 1 : Fpk                                                                   3.4 

where 1pk is the first Piola-Kirchhoff stress and it is expressed as  1 det F Fpk T    . 

The stress power may be decomposed into elastic and plastic component as: 

 e p                                              3.5 

where e is the elastic stress power per unit volume of the intermediate configuration and 

it is expressed as 2 :e pk e   , with e and 2pk being the Green elastic strain and the 

second Piola- Kirchhoff stress respectively and they are expressed as:  

  
1

1
2

e eT eF F                                                               3.6 

  2 1detpk e e e TF F F                                               3.7 
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 Conversely, p is the plastic stress power per unit volume of the intermediate 

configuration and it is expressed as:  

  

    2 1:p eT e pk p pF F F F                                       3.8 

 For a linear elastic behavior with the assumption of small elastic strains i.e. e eE  , the 

constitutive equation (linear hyperelastic relation) is given as:  

  2 :pk eC                                                            3.9 

where C is ranked anisotropic elasticity tensor of fourth order. 

Considering a slip plane with unit normal vector 0m and slip direction unit vector 

0s for each of the slip systems ( ) in the reference configuration, the plastic velocity 

gradient ( ˆpL ) is obtained as the sum total of all the slip systems in the intermediate 

configuration and it is expresses as: 

  1

0 0

1

ˆ ˆ ˆ
slipN

p p p P pL F F D W s m  







                                           3.10 

where   is the shearing rate for each of the active slip system ( ).  ˆ pD and ˆ pW are the 

plastic rate of deformation and plastic spin respectively for the intermediate configuration 

and they are expressed as the symmetric and anti-symmetric parts of the plastic gradient:  

  
1ˆ ˆ ˆ
2

p p p

ij ij jiD L L                                                              3.11 

  
1ˆ ˆ ˆ
2

p p p

ij ij jiW L L                                                             3.12 
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Relationship exists between the slip system normals and directions in the current 

configuration and that of the reference configuration and it is given as 
0

e es F s    and 

1

0

em m F    .  

From Equation 3.10, the plastic shearing rate as given by Orowan [120] is expressed as:   

 
mbv                                                                  3.13 

where 
m

  is the density of mobile dislocation, b is the burgers vector and v  is the 

average velocity of the burgers vector.   

 Using Equations 3.8 and 3.10, the relation p  



    can be used to define the 

resolved shear stress,  , for  slip system. Thus, the resulting resolved shear stress for 

each slip system is expressed as:   

    2

0:eT e pk

oF F s m                                             3.14 

For material with a very small elastic strain, 1eT eF F  and the second Piolar-Kirchhoff 

stress tensor, 2pk , can be replaced by the Cauchy stress tensor,  . Thus Equation 3.14 

becomes:  

  : s m                                                            3.15 

The shearing rate on each slip system, using a two-term potential flow rule, is expressed 

as:  

  
1 2

1 2 sgn

n n

D D

    

  

 

    
    

   
   
 
 

                  3.16 

where 1 and 2 are constants, the flow exponents are represented as 1n and 2n ,  is the 

slip resistance on each slip system and it is called the mechanical threshold [117], D is 
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the average drag resistance,  is the back stress on each slip system.  The back stress, 

unlike for pure single crystal, are very important component for two phase materials such 

as Nickel base superalloys and thus cannot be neglected [121]. It is also important to note 

that the back stress is subtracted from the applied shear stress to reflect the net force 

responsible for driving the dislocation. The threshold stress accounts for the anomalous 

yield behavior of the '  nickel base superalloy, i.e, the increase in yield stress 

resulting from increase in temperature in the intermediate temperature range.   

 The first part of Equation 3.16 accounts for the dominant cyclic behavior where 

the threshold stress plays the role of the yield stress. Conversely, the second part of 

Equation 3.16 accounts for the effect of creep thermally activated at lower stresses. When 

the first term is not active, especially at lower stresses, matrix faulting and dissociation of 

heterogeneous plastic dislocation control the dominant flow mechanism. Complex cyclic 

stress – strain history like that of nickel base superalloy is best modeled by the two term 

flow rule presented in Equation 3.16. 

 A total of 18 slip systems are used to model dislocation motion within the matrix 

of nickel base super alloy; 12 octahedral slip systems and 6 cube slip systems. A list of 

the slip systems is provided in Table 3.2. 
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Table 3.2 
 

Slip systems in nickel base superalloy [102] 
 

Slip System 

∝ 

Octahedral Slip Cube Slip 

Slip Plane Slip Direction Slip Plane  Slip Direction 

1  111  011   100  011  

2  111  101   100  011  

3  111  110   010  101  

4  111  011   010  101  

5  111  101   001  110  

6  111  110   001  110  

7  111  011    

8  111  101    

9  111  110    

10  111  011    

11  111  101    

12  111  110    

 

 The 12 octahedral slip systems are the active at lower temperatures within the   

matrix which is typical of a FCC lattice structure.  However, at higher temperatures and 

higher resolved shear stresses, the 6 cube slip systems are activated in the ' phase though 

their role is not yet well understood and characterized.  The role of the cube slip system 

in the homogenized '  single crystal is best appreciated by the inability of the 

octahedral slip in modeling the stress –strain – time behavior as a function of 

temperature. Two sources of cube slip have been indentified which include: (a) zig-zag 

octahedral slip formation in the  - matrix at the '  interface and (b) the manifestation 
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of actual cube slip at higher temperatures in the ' precipitates along orientations close to 

 111  [122]. Bettge and Osterle [123] have established that the cube slips are actually due 

to thermal activation of the zig-zag cross slip of screw dislocations. The screws 

dislocations are blocked at the '  interface as they migrate through the ' precipitate 

channels causing the zig-zag cross slip mechanism as shown in Figure 3.7. Hence, at 

elevated temperatures, there is complicated interaction of dislocations created by cross 

slip which result in an increased dislocation density and restricts the motion of mobile 

dislocations. Therefore, in this model, two internal state variables are employed to 

describe the nickel base superalloy microstructure namely dislocation density and the 

back stress. Based on the afore-discussed slip systems, 18 slip systems are modeled in 

IN100.  

 

Figure 3.7. Schematic of interfacial zig-zag motion of screw dislocations [123] 
 

Taylor relation is assumed for the hardening of the threshold stress on each of the slip 

system and it is expressed as:  

 0 t b                                                              3.17 
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where each slip system dislocation density is represented as  (for both cube and 

octahedral slip systems),  is the shear modulus and it is govern by a rule of mixtures,b

is the effective burgers vector, 
t is a coefficient which accounts for the statistical 

arrangement of the dislocation population.  

From Equation 3.17, the shear modulus is expressed as:  

   '1 2 3p p p m mf f f f


                                                  3.18 

where 1 2 3, ,p p pf f f  are the volume fractions of the three ' matrix phases respectively i.e 

primary, secondary and tertiary while mf  is the volume fraction of the matrix phase. Also 

the effective burgers vector is expressed as:  

   '1 2 3p p p m mb f f f b f b


                                             3.19 

where 'b


is the burger vector of the ' precipitates and 
mb is the burger vector of the 

matrix.  

The initial critical resolved shear stress (CRSS), 0,



 , as given by Reppich et al. [124, 

125] is expressed as:   

 
     

   

1

0, 0, 1 2 2 3 3 1 2

1

0, 0, 1 2 2 3 3

, , , ,

, , , ,

n
n n

oct oct oct p p p p p ns

n
n n

cub cub cub p p p

f d f d f f f

f d f d f


 


 

  

 

  

 

    
  

  
  

           3.20 

where, 

 

' '

1 2 '

1 2 3 3 3

1 2

p p gr

oct cub p p p p

gr

f f c
c c c f d

d d d
  

 
       
 
 

           3.21 
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Here 
,

APB

APB ref







where 
APB is the anti-phase boundary energy. The primary, secondary 

and tertiary gamma prime precipitate sizes are represented by 
1 2,d d and 

3d respectively 

while the grain size is denoted as grnd . 
' ' '

1 2 3,  and p p pf f f are the normalized precipitate 

volume fractions. The value of exponent n ranges from 1 – 1.2 and values of 1 2 3, ,p p pc c c

and grc are determined by curve fitting initial yield strength to the experimentally 

determined values.   

 Based on the work of Qin et al. [126, 127] and Shenoy et al. [128], the non-schmid 

stress, ns

 ,  dependence of the octahedral slip systems is expressed as:  

 
ns pe pe cb cb se seh h h                                                          3.22 

Here the resolved shear stress on the primary, secondary and cube slip systems are 

denoted by   

,pe se

   and cb

 respectively while ,  and pe cb seh h h are constants. 

Feaugas et al. [129] have identified a direct proportionality between the rate of 

dislocation recovery and the dislocation density. Thus, the evolution of the dislocation 

density is expressed as [130]:   

  

  0 0 1 2h Z k k   

                                                3.23 

and 

 

1

0

2

2
,   eff

eff

k
Z d

dbd








 
   

 
                                         3.24 
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where 1k 

 is the dislocation storage and 
2k 

 is the dynamic recovery.
1 2,k k and k are 

constants, 
2d  is the secondary precipitate spacing and effd is the equivalent precipitate 

spacing. The hardening coefficient for cube and octahedral slip systems are given as 

0 2.4h  and 
0 4.8h  respectively. 

Back stress is used to capture the effects of Bauschinger effect and it is expressed as 

[130]:  

   sgnC b     

                                                 3.25 

and  

 0 0

0 1

Z

Z k 










                                                          3.26 

where C is a fitting parameter and   reflects the relative proportion of geometrically 

necessary dislocations to total dislocation density.  

 

3.4  Titanium Alloy 

Titanium is widely known for its good resistance to corrosion and high strength to 

weight ratio. When alloyed with other metals and heat treated, it can achieve a wide 

range of attractive properties both at low and high temperatures. Titanium alloys exhibit 

high strength and creep resistance at high temperatures while at low temperatures, they 

exhibit high strength and fracture toughness.  

At room temperature, an unalloyed titanium has hcp crystal structure but with increase 

temperature to the neighborhood of 882 0C , it undergoes a change in phase from the hcp (

 ) phase to a bcc (  ) phase.  It is possible to produce a completely  - phase,  - 

phase, or a mixture of  and  phases by varying the alloying elements.  In summary, 
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different microstructures can be realized for the same alloy by varying the processing 

parameters and heat treatment. Titanium is dual phase and it has the inherent problem of 

varying individual phases’ properties due to different amount of alloying elements.  

The hcp structure of titanium, unlike for fcc structured materials, has several 

planes which are favorable for occurrence of slip or twinning.  In most hcp materials, 

basal (0001) and prismatic  1010  have been identified as the primary slip planes with a 

closed packed direction 1120  for the slip vector. Titanium has been identified to 

exhibit flow stress versus temperature anomaly as well as orientation dependent yielding 

according to the work of Naka et al. [131] . This phenomenon is modeled in the crystal 

plasticity codes presented in the following section.  

 

3.5  Crystal Plasticity Modeling of Titanium Alloy 

The crystal plasticity model used in this work follows the existing work of 

Mayeur et al. [132]. The framework is as described in Section 3.4 for nickel base 

superalloy. However, the flow rule and the hardening rule differ and these are presented 

in this section.  

The relationship between the slip system shearing rate and the resolved shear 

stress of the slip system is described by the power law flow rule given as: 

 0 sgn

M

D

  

  



  
   

 
                                        3.27 

Here, 0 is the reference shearing rate, M is the inverse strain-rate sensitivity exponent 

which controls the rate sensitivity of flow, 
 is the resolved shear stress,  is the back 
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stress,  is the length scale-dependent threshold stress and D is the drag stress. As 

developed by Zhang et al. [133], the drag stress is taken as a non-evolving constant, i.e.

0D  , while the back stress evolves according to an Armstrong-Frederick direct 

hardening/dynamic recovery type of equation, i.e., 

Dh h                                                           3.28 

with  0 0  . The threshold stress is expressed as  

y

s

d

 




                                                               3.29 

 

3.6 Three Dimensional Finite Element Implementation Procedure for Nickel 

Base Superalloy 

 The crystal plasticity model for nickel base superalloy presented in Section 3.3 is 

coded into ABAQUS 2006 UMAT based on the previous work by Mahesh [102]. The 

notched geometry modeled in this work is a v-notched cylindrical component 

schematically represented as shown in Figure 3.8. Different test cases are modeled which 

include: (a) nickel base specimen without inclusion (b) nickel base specimen with 

horizontal elliptical inclusion at varied distance from the notch root (c) nickel base 

specimen with inclusions at various orientations. Some of the material parameters for the 

nickel base superalloy in the crystal plasticity codes are obtained from Musinski [134]  

and Przybyla et al. [135] and are as presented in Table 3.3. 
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Figure 3.8. Gage section of the cylinderical specimen with a circumferential V-notch. 

 

Table 3.3 

 

Material parameter for nickel base superalloy constitutive model [134, 135] 
 

𝝉𝒐,𝒐𝒄𝒕
𝜶  (𝐌𝐏𝐚) 𝝉𝒐,𝒄𝒖𝒃

𝜶  (𝐌𝐏𝐚) 𝒄𝒑𝟏 𝒄𝒑𝟐 𝒄𝒑𝟑 𝒄𝒈𝒓(𝐌𝐏𝐚√𝐦𝐦) 𝐧𝛋 

85.1 170.2 1.351 1.351 1.22*1022 9.432 1 

𝐛𝛄′(𝐧𝐦) 𝐛𝛄(𝐧𝐦) 𝛍𝛄′(𝐌𝐏𝐚) 𝛍𝛄(𝐌𝐏𝐚) 𝒌𝟏(𝒎𝒎−𝟏) 𝒌𝟐 𝛒𝛌,𝐨
𝛂 (𝐦𝐦−𝟐) 

0.25 0.41 81.515 130.150 2.6*105 8.2 105 

𝒉𝒐 𝒉𝒑𝒄 𝒉𝒄𝒃 𝒉𝒔𝒄 𝚪𝐀𝐏𝐁 𝜼𝒐 𝒌𝜹 

4.8 or 2.4 0.8 0 -0.4 1.64*10-3 2.82 2.5*10-3 

𝑪𝟏𝟏,𝜸′(𝐌𝐏𝐚) 𝑪𝟏𝟐,𝜸′(𝐌𝐏𝐚) 𝑪𝟒𝟒,𝜸′(𝐌𝐏𝐚) 𝑪𝟏𝟏,𝜸(𝐌𝐏𝐚) 𝑪𝟏𝟐,𝜸(𝐌𝐏𝐚) 𝑪𝟏𝟐,𝜸(𝐌𝐏𝐚) 𝒏𝟏 

135,000 59,210 81,515 158,860 73,910 130,150 15 

𝒏𝟐 𝜸𝟏̇(𝒔−𝟏) 𝜸𝟏̇(𝒔−𝟏) 𝑫𝜶(𝐌𝐏𝐚)    

9 8.7 3.9*10-11 150(oct) 

180(cub) 
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3.6.1 Nickel Base Specimen Without Inclusion 

Due to symmetry in geometry and loading, only one-quarter of the notched 

cylindrical geometry is modeled. Three different notch root radii are modeled to 

investigate the effect of notch root radius on the fatigue notch factor of the notched 

specimens. The dimensions of the three test cases modeled are as given in Table 3.4.  

Table 3.4 

 

Dimensions of the notched specimens 
 

Test 
Case 

D (mm) Notch radius, 
𝛒 (mm) 

Notch depth, h (mm) R-ratio 

1 5 0.150 0.142 0.1 

2 5 0.213 0.267 0.1 

3 5 0.284 0.714 0.1 

 

To determine the optimum element size to use for meshing the 3D model, mesh 

refinement study was conducted using a cube specimen and subjecting it to 568 MPa load 

which is one of the loads applied to the specimens according to the experimental data 

obtained from Weiju et al. [26].  The Von Mises stress converged at an element size of 64

m and thus element size of 64 m  is used in meshing all nickel base superalloy 

specimens modeled. It is noted that the 64 m  falls within the range of grain size for 

nickel base superalloy which normally vary from 30 m to 70 m  [136]. The model is 

meshed using 3D stress four-node linear tetrahedron element type (C3D4). The bottom of 

the model is encastre and symmetry boundary conditions are applied on the planes of 

symmetry of the geometry. Six steps are subsequently created for axial load application 

to form a 3 loading cycles. A complete model showing the applied boundary conditions 

and loading condition is as shown in Figure 3.9.  
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Figure 3.9. Model with notch root radius 0.150 mm and notch depth 0.142 mm showing 

load and boundary conditions application. 

 

3.6.2 Nickel base specimen with horizontal elliptical inclusion at varied distance 

from the notch root 

The metal carbide (MC) inclusions commonly found in nickel base superalloys 

are taken into consideration in this model. In this model, it is assumed that the shape of 

inclusions is elliptical with an aspect ratio, / 2A a b   , where a and b are the major 

and minor axis of the ellipse respectively. Thus, the MC inclusions is modeled as 

horizontal inclusion of major axis 150 m  and minor axis 75 m  and assigned linear 

elastic material properties with Young’s modulus 405 GPa and a Poisson’s ratio of 0.14 
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[102] . Here, the full geometry is modeled because there is no symmetry in the geometry 

due to presence of inclusion though symmetry is still maintained in load application. The 

medium geometry is modeled and has diameter of 5 mm, notch root radius of 0.213 mm 

and notch depth of 0.267 mm with an applied stress of 568 MPa.  The model is meshed 

using 3D stress four-node linear tetrahedron element type (C3D4) of size 64 m as early 

established by the mesh refinement study conducted in the previous section. Four test 

cases (Table 3.5) are considered with the horizontal inclusion placed at different grain 

distances away from the notch root to investigate where the inclusion has maximum 

influence on the stress distribution in the vicinity of the notch root.  The different test 

cases are as shown in Figure 3.10.  

Table 3.5 

 

Four test cases with inclusion at different distances from notch root radius 
 

Test cases Distance of Inclusion from Notch 

(grains) 

1 10g 

2 8g 

3 6g 

4 4g 
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Figure 3.10. Inclusions at different grain distance from the notch root radius: (a) 4 grains, 

(b) 6 grains, (c) 8 grains, and (d) 10 grains. 

 

3.6.3 Nickel base specimen with elliptical inclusion at various orientations 

Here the effect of orientation of inclusion on probability of failure, fatigue notch 

factor and notch sensitivity index in nickel base superalloy is investigated. Three 

different orientations of inclusion are modeled, in the 3D matrix, which are horizontal, 45 

degree rotation and 90 degree (vertical) rotation as shown in Figure 3.11.  The inclusions 

for the three cases modeled are maintained at 8 grains distance from the notch root radius. 

This is because, from Section 3.6.2, 8 grain distance has been identified as the location 

where the inclusion has maximum influence on the stress distribution of the component. 

Linear elastic material properties are specified for the inclusion while the material 

parameters presented in the Section 3.6 were specified for the matrix.  3D stress four-
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node linear tetrahedron element type is used in meshing the geometry and the bottom of 

the specimen is encastre and axial load of 568 MPa is applied at the top of the geometry.  

 

Figure 3.11. Different orientation of inclusion in the matrix: (a) horizontal (b) 90 degree 

rotation (vertical) and (c) 45 degree rotation. 
 

3.7 Three Dimensional Finite Element Implementation Procedure for Titanium 

Alloy  

The crystal plasticity model presented in Section 3.5 is coded into ABAQUS 2006 

UMAT based on the previous work by Mayeur et al. [132] and Zhang et al. [133]. Some 

of the material parameters for the textured Ti-6Al-4V in the crystal plasticity codes are 

obtained from Brider et al. [137] and are as presented in Table 3.6. The elastic constants (

ijc ) are obtained from the work of Simmons et al. [138] on single crystals and have been 
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adjusted based on the measurements by Larson et al. [139] on strongly textured Ti-6Al-

4V alloy.  

 

Table 3.6 

 

Ti-6Al-4V crystal plasticity model parameters 
 

Elastic stiffness  11C   162,400 MPa   

  12C   92,000 MPa  

  13C   69,000 MPa  

  33C   180, 700 MPa  

  44C   49,700 MPa  

Flow rule  0   0.001 1s   
  M   15 
Back stress   0   0 

  h   40,000 
  Dh   8000 

Threshold stress  y   17.3 MPa 0.5mm   

   0s

   150 MPa  

     50 
   

 

Finite element simulations were performed on three different geometries, meshed 

using 3D stress four-node linear tetrahedron element type (C3D4) and consisting of 

approximately 218940 elements to estimate the stress distribution and possible plastic 

straining that occur in the notched specimens. The dimensions of the specimens used and 

the different test cases are as given in Table 3.7.  
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Table 3.7 

 

The seven different test cases 
 

Test  
Case 

Kt Notch radius,  
𝛒 (mm) 

Notch depth, h 
(mm) 

R-ratio Average alternating HCF 
strength at 106 cycles (MPa) 

1 2.78 0.330 0.729 -1 173.6 

2 2.78 0.330 0.729 0.1 158.9 

3 2.78 0.330 0.729 0.5 104.6 

4 2.78 0.203 0.254 0.1 167.2 

5 2.78 0.203 0.254 0.5 105.2 

6 2.78 0.127 0.127 0.1 144.7 

7 2.78 0.127 0.127 0.5 111.0 

 

To reduce computational time, two different simplifications were adopted;  

(1) The notched specimen geometries are decomposed into three different regions: an 

outermost region, far from the notch root, where isotropic linear elasticity is used; 

an intermediate transition region where macroscopic J2 cyclic plasticity theory is 

used; and finally the notch root region where crystal plasticity theory is used. The 

element size at the crystal plasticity region was chosen to coincide with the 

average grain size of Ti-6Al-4V which is 45 μm. The domain decomposition is as 

shown in Figure 3.12.  

(2) One quarter of the cylindrical notched specimen was modeled because of the 

symmetry in loading and geometry of the specimen. Symmetry boundary 

conditions are applied at the planes of symmetry. The meshed specimen for the 

0.33 mm notch root radius and Kt = 2.78 is as shown in Figure 3.13. 
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Figure 3.12. Domain decomposition of the cylindrical notched specimen geometry. 

 

Figure 3.13. Finite element mesh for 0.33mm notch root radius and kt= 2.78 consisting of 

four-node linear tetrahedron element type (C3D4). 
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The bottom of the notched specimen is encastre while symmetry boundary 

conditions are applied to the two planes of symmetry making up a total of 3 boundary 

conditions. A six step cyclic load involving three loading cycles are applied at the top of 

the specimen in the axial direction.  The notched specimens were tested at three different 

load ratios; R=0.1, R=0.5, and R=-1. Average alternating HCF strength at 106 cylces, as 

determined by Naik et al. [140] are applied to the top of the specimen. Thus a load 

control constraint was used for the simulation. Figure 3.14 shows the ABAQUS 3D 

model of the notched geometry with the complete defined loading and boundary 

conditions.  

 

Figure 3.14. ABAQUS 3D view of the notched geometry with mesh, loading and 

boundary conditions. 
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3.8 Flow Chart of the Finite Element Modeling Strategy 

The flow chart for the implementation of the finite element model is shown in Figure 

3.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts Creation 

(Create the cylindrical notched 

specimen in Abaqus) 

Properties Definition 

(Assign the respective 

properties to the 3 parts 

created)  

Assembly 
(Assemble the parts by 

creating 2 independent 

instances and put them 

together by a tie) 

…………… 

Meshing 
(Mesh all the parts 

with a C3D4 element 

types. With element 

size varying for 

different parts) 

Application of Boundary 

conditions (BCs) and Load 

steps (Assign BCs and a 6-

steps load control loading 

cycle) 

Post Processing 
(Calculate the probability 

of failure from the stress 

distribution extracted from 

the damage process zone 

obtained from the 

simulation) 

Calculation of kf 

(Use the stress distribution 

obtained from the simulation to 

calculate the microscopic 

fatigue notch factor using 

Weibull’s and close form 

solution) 

Job Creation 
(Write the input file by 

creating job). 

).....................................

.......................................

......... 

 

Job Running 

 (Run the job with the 

crystal plasticity 

FOTRAN codes, for 

multiple orientations) 
…………………).........

.......................................

..................................... 

 

Figure 3.15. Flow chart of the finite element modeling and simulation strategy. 
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CHAPTER  4 

 

WEAKEST LINK PROBABILISTIC FRAMEWORK FOR FATIGUE NOTCH 

FACTOR 

4.1  Fatigue Damage Process Zone 

Based on the stress/strain distributions extraction from finite element analysis for 

both elastic and elastic-plastic analysis, the concept of fatigue notch factor has been put 

forward and attempts have been made by different researchers to succinctly define the 

fatigue damage process zone [141, 142, 143, 73, 41, 31]. In general, the fatigue damage 

process zone is a volume comprising of pre-fracture zones in the vicinity of the notch, 

inclusion or any other stress raisers identified in the material. The pre-fracture zone is 

normally due to the detrimental effects of the stress raisers. To accurately predict life in 

HCF, it is of paramount importance to be able to define the fatigue damage process zone 

with some level of precision. However, it is difficult if not impossible a task to 

accomplish [141]. According to Ostash et al. [142], fatigue damage process zone is 

defined as some volume in the bulk material in which macro- and micro-plastic strains 

take place which also serve as source of initial damage of the material microstructure. 

Some of the factors that affect the size of the fatigue damage process zone include 

material properties, loading amplitude, and environment.  

The fatigue damage process zone used in this work is an extension of the fatigue 

damage process zone as defined by Owolabi et al. [28, 144]. This new fatigue damage 
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process zone is defined based on the distribution of stress within the material. The 

statistical distribution of stress, σ, around the notch root and inclusion is used as a new 

criterion in defining the fatigue damage process zone. It is based on the assumption that 

the fatigue damage process zone is a region around the notches and inclusion having 

grains with σ values equal to or greater than a specified microscopic threshold value, σth, 

as shown in the Figure 4.1. Here, the yield stress of the material, yield ,  is specified as the 

microscopic threshold value.  

 

Figure 4.1. Schematic of fatigue damage process zone. 

 

4.2  Probabilistic Framework for Fatigue Notch Factor (Weakest Link Thoery) 

Due to inherent scatter involved in high cycle fatigue (HCF) lives of engineering 

materials, numerous probabilistic approaches have been developed in HCF lifing 

strategies [51]. These approaches can be used to predict scatter of fatigue data and the 

dependence of fatigue limits on fatigue damage process zone. The predictive capabilities 

of these models can be enhanced by incorporating information regarding the origin of the 

scatter such as due the presence of defects and micro-scale plastic deformation. The basic 
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assumption of the weakest link theory is the existence of statistically distributed defects 

at the surface or in the volume of the material and the occurrence of crack at the largest or 

most dangerous one when a certain critical stress level is reached. 

The weakest link theory presented here to obtain the fatigue notch factor and 

associated notch sensitivity index follows the framework presented in [27, 145] with a 

few modifications based on the physical mechanisms of fatigue crack formation and 

growth for aero-engine materials with and without inclusions. IN 100 contain nonmetallic 

inclusions and pores that play a critical role in components failure. Fatigue is manifested 

by extremal microstructure attributes that promote slip intensification and hence does not 

conform to homogenization. Thus, a probabilistic formulation to determine the failure 

potency in heterogeneous materials should include a consideration for these defects. This 

task will combine the framework in [145] with other existing probabilistic formulations 

that consider the size distribution and proximity of defects and different competing 

damage mechanisms for IN 100. The applicability of the framework will also be 

investigated for materials containing more complex dual-phase microstructures such as 

Ti-6Al-4V with realistic texture.  

For a smooth specimen having a fatigue damage process zone of volume V and 

containing defects, if the volume is divided into “m” small volume elements, dV, the 

probability of failure of a sufficiently small volume element is given as:  

dP dV                         4.1 

where, the critical defect density is denoted as   and it is defined as the expected number 

of defects per unit volume of the smooth specimen. Invoking the weakest link theory, the 
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probability of survival of the entire volume can be obtained from the probability of 

survival of all “m” number of sub-volumes i.e.  

   
1 1

1 1
m m

s i

i i

P dP dV
 

                     4.2 

Equation 4.2 is based on the assumption that the defects are randomly distributed within 

the volume and there is no any form of interaction between them. This assumption is only 

reasonable when considering the formation of a fatigue crack(s) in high cycle (HCF) and 

very high cycle fatigue (VHCF) regimes. Following the framework presented in [27], as 

the volume of each small element tends to zero, Equation 4.2 can be expressed as:   

exp

d

s

V

P dV
 

  
 
 
                                              4.3 

Using the generalized extreme value (GEV) distribution function, the distribution of 

defects, a, that are above the threshold, tha , is modeled by a power law of the form: 

1

0 0

1
1 tha a

V a



 



  
    

  
            4.4 

where scale and shape parameters are represented as 
0a  and  respectively. Substituting 

Equation 4.4 into 4.3 becomes:  

1

0 0

1
exp 1

d

th
s

V

a a
P dv

V a





    
      

    

            4.5 

if  *

0tha a   , re-arranging Equation 4.5 yields, 
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1

*

0 0

1
exp

d

s

V

a
P dv

V a


   

   
   
              4.6 

where a0
* is regarded as the mean defect size. Equation (4.6) is only valid if 0 . The 

critical defect size is related to the microscopic stress (taking here as a random variable) 

through a power law relationship of the form 

z

A

a
                           4.7 

where A and z are materials constants. Similarly, the stress amplitude, σ0 corresponding 

to the mean defect size a0
* can be taken as the fatigue limit of the reference volume Vo for 

50% failure probability. Thus we can have: 

0
*

0
z

A

a
                                           4.8 

Combining Equations 4.7 and 4.8 we have 

0

*

0

z

a

a

a

 
  
 




                   4.9 

Substituting Equation 4.9  into Equation 4.6 yields 

 
0 0

1
exp

d

b

a
s

V
P dv

V





  
    
   

                 4.10 

where b=z/ξ.   

If a th    , hence we have: 
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0 0

1
exp

d

b

th
s

V
P dv

V

 



  
    
   

                                               4.11   

For ξ>0, b,
th and σ0 represents a 3-parameter Weibull shape, location and scale 

parameters.  The cumulative probability of HCF failure of the component, specifically 

defined can be obtained from Equation 4.11 as: 

k
0 0

1
1 exp

d

b

th
f

V
P dv

V

 



  
     
   

            4.12 

To facilitate development of the expression for fatigue notch factor from Equation 4.12, 

the concept of stress homogeneity factor that have been used in [27], is introduced here. 

Thus Equation 4.12 can be re-written as, 

max

0 0

1 exp

b

d
f

kV
P

V





  
     
   

                     4.13 

where 

max

1

d

b

th

V
d

k dv
V

 



 
  

 
                           4.14 

is regarded as the stress homogeneity factor. Conventionally, the fatigue notch factor is 

the ratio of unnotched to notched fatigue strength at the same probability of failure 

(usually 50%). Using Equation 4.11, the probability of failure of unotched specimen and 

a notched specimen will be the same when 
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max, max,

0 0

exp exp

b b

s ns s n n

o o

k V k V

V V

         
        

         

 

 
       4.15 

where the subscripts n and s represent the respective value of the variable for notched and 

smooth (unmatched) specimens respectively. The ratio of the smooth to notch fatigue 

driving force parameters (i.e., the stress amplitude) is used to define a new fatigue notch 

factor given as 

1 1

max,

max,

b b
s n n

f

n s s

k V
k

k V

   
     

   




    4.16 

For smooth specimen that is loaded at a very low stress or strain amplitude in the HCF 

regime, the number of critically stressed grains (or elements) is very small. Thus for the 

life limiting case in which only one grain or element is critically stressed above the 

threshold, Vs = Vet (i.e. volume of element or grain) and sk  = 1; thus Equation (4.16) 

becomes 

 

1

1
max,

max,

b
s nb

f n

n e

V
k k

V





 
   

 
                                       4.17 

 

1
1

max,

1

d

b b
b

th n
f

V
d n e

V
k dv

V V

 



    
           

                                 4.18  

However, if the materials contain some pores or inclusions, Equation 4.16 must be used.     

It is important to state that Eqs. 4.16 and 4.18 can be used only if subsurface crack 

initiation is the failure process, if  crack originates from the surface, then the volume 

parameter in this equation should be replace  with the surface area. 
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4.3 Closed Form Solution for Fatigue Notch Factor 

To resolve inelastic deformation at the scale of microstructure to facilitate next 

generation microstructure-sensitive notch root analyses inherently requires mesh 

refinement to the scale of microstructure, which is often several orders of magnitude finer 

than the scale of the component. Moreover, the kind of constitutive equations that must 

be used are often of advanced form, for example, discrete dislocation mechanics, 

requiring rather sophisticated and time-consuming computational strategies to perform 

concurrent analyses at the component and notch root microstructure scales. Accordingly, 

direct application of multiscale finite element analysis is simply too computationally time 

consuming for practical microstructure-sensitive fatigue damage assessment of notched 

components under multiaxial loads. Thus, for practical engineering application, a more 

simplified and approximate model for fatigue notch factor is presented here based on 

closed form solution for stress distribution at the notch developed by Glinka using the 

Creager-Paris solutions of the stress field ahead of a crack. For a notch component with 

notch root radius ρ and stress concentration factor, kt, the axial stress distribution along 

the notch root centre line is given as: 

3 31 1
2 2 2 2

max,

1 1 1 1

2 2 2 2
2 2 2 2

t nk S
x x x x

          
                                    
          

   
 

   
     4.19 

Finding the ratio of the stress amplitude to the maximum stress and substituting 

into Equation 4.18 at x = ac (i.e., the critical distance) will allow the determination of an 

expression for the fatigue notch factor of the form 
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1

31
2 2 1

c c

1 1 1

2 2
2 2

b b

b

n
f

e

V
k dV

V Va a

                                        


 

 
                 4.20 

Assuming that the critical distance is constant for the notched component with a notch 

root radius ρ, Equation 4.20 reduces to 

31
2 2 1

c c

1 1

2 2
2 2

b

n
f

e

V
k

Va a

                                  

 

 
                                4.21  

The above equation for kf was derived using the fatigue damage process zone 

based on critical distance, probabilistic framework based on the weakest link, and the 

Glinka’s closed form solution based on the notch root stress distribution.  
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CHAPTER  5 

 

RESULTS AND DISCUSSION 

 

5.1 Determination of Parameter Values for the Weakest Link Probabilistic 

Framework 

In Equation 4.12 there are three unknown parameters namely the shape, location 

and scale parameter. The location parameter otherwise called the threshold stress is taken 

as the yield stress of the material leaving us with two unknown parameters. The 

remaining two unknown parameters are estimated using the modified moment estimation 

(MME) technique [146]. Here, the first two sample moments are used i.e., the mean m

and the variance 2

m of the stress distribution . With modification of the expression 

obtained from Cohen and Whitten [146] to account for notch size effect, the mean and 

variance are given as:  

 0
0 1

b

m th

d

V

V
   

 
   

 
                                                5.1  

  
2

2 2 20
0 2 1

b

m

d

V

V
   

 
  

 
                                             5.2  

In Equations 5.1 and 5.2, 

  1 ,  1,2k kb k                                                  5.3  

And   is the gamma function defined by the integral  
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   1

0

s ts t e dt


                                                        5.4 

By solving Equations 5.1 and 5.2 simultaneously, the two parameters 
0 and b are 

determined.  The yield stress,
th , of the nickel base superalloy is 1045 MPa while for 

titanium alloy it is 990 MPa. From Equations 5.1 and 5.2, b is determined to be 15.6 and 

7.7 for nickel base superalloy and titanium alloy respectively.  While the scale parameter 

0 is determined to be 2826.07 MPa and 3205.03 MPa for nickel base superalloy and 

titanium alloy respectively. From the geometry of the specimens, the reference volume 

V0 is calculated to be 11.152 mm3 and 16.96 mm3 for nickel base superalloy and titanium 

alloy respectively.  

  

5.2 Notch Size Effects on Fatigue Notch Factor, Notch Sensitivity Index, and 

Probability of Failure for Nickel Base Super Alloy without Inclusion.  

Here, three different notch root radii are simulated in Abaqus but with ten 

different grain orientations for each of the notch root radius. The stress distribution from 

the simulation of the notched nickel based super alloy is extracted and it is used in 

Equation 4.12 to determine the probability of failure for each notch root radius and the 

associated fatigue notch factor. The notch sensitivity index q for each case is also 

computed using Equation 2.3. The stress distribution obtained from Abaqus for three 

different notch root radii is as shown in Figure 5.1 which shows the maximum principal 

stress in the y-direction (axial).  
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Figure 5.1. Stress distribution for nickel base notched specimen without inclusion: (a) 

notch radius  = 0.150 mm (b) notch radius  = 0.213 and (c) notch radius  = 0.284. (All 

results in MPa) 
 

  Using Equation 4.12, the probability of failure was computed for ten different 

grain orientations for each of the notch root radius and the results are as plotted in Figure 

5.2.  
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Figure 5.2. Probability of failure vs notch root radius for notched nickel base superalloy 

specimens without inclusion. 
 

Figure 5.2, shows the combine effect of notch root radius and the grain orientation 

of nickel base superalloy on its probability of failure. It is observed that the probability of 

failure rapidly increases with increasing notch root radius. Also, it can be seen that the 

orientation of the nickel base superalloy grains plays a significant role in determining the 

probability of failure and susceptibility of the bulk material to fatigue failure. It is 

observed that the probability of failure for each notch root radius varies with grain 

orientation. For example, for nickel base superalloy with notch root of 0.284 mm, the 
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probability of failure varies from 0.52 to 0.64. Thus, notches with favorably oriented 

grains in the vicinity of the notch and inclusion exhibit higher probability of failure.  

Using Equation 4.18, the associated microstructure dependent fatigue notch 

factors for the estimated probability of failures above are computed and the average 

fatigue notch factor for each notch root radius is plotted as shown in Figure 5.3. Also, 

experimentally obtained fatigue notched factor from Weiju et al. [26] for nickel base 

superalloy are plotted for comparison purpose (Figure 5.3). Table 5.1 shows both the 

experimentally obtained fatigue notch factor and that determined using the developed 

probabilistic framework.  

Table 5.1  

Experimental and  Weibull fatigue notch factor for notched nickel base superalloy 

specimen without inclusion. 
 

Notch Root Radius Fatigue Notch Factor 

 Weibull Experiment 

0.150 1.54 1.56 

0.213 1.70 1.73 

0.284 1.74 1.73 
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Figure 5.3. Comparison of experimentally determined kf with the determine kf using the 

developed probabilistic framework. 
 

Figure 5.3 shows that the determined fatigue notch factor using the developed 

probabilistic framework follows the same trend as the experimentally obtained value. The 

result shows that the fatigue notch factor increases with increasing notch root radius. It 

can be inferred from the result that larger notch root radii are detrimental to fatigue 

failure of notched nickel base superalloy.  

Using the expression for notch sensitivity index which is presented in Equation 

2.3 of Chapter 2 of this thesis, the notch sensitivity index for both the experimentally 
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determined kf and the kf determined using the newly developed probabilistic framework 

are computed and plotted as given in Figure 5.4 below for comparison purpose.  

 

Figure 5.4. Comparison of notch sensitivity index obtained from experiment and that 

obtained from developed model. 
 

Figure 5.4 shows that the Weibull notch sensitivity index follows the same trend 

as that of the experimentally determined value. It can be inferred from the result that the 

notch sensitivity of notched nickel base superalloy increases with increasing notch root 

radius.  
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To show the general performance of the newly developed model in accurately 

predicting fatigue notch factor, the determined fatigue notch factor using the new 

probabilistic framework and closed form solution are plotted against fatigue notch factor 

determined using existing conventional empirical methods like Neuber, Peterson and 

Heywood as shown in Figure 5.5.  

 

Figure 5.6. Comparison of kf determined by the new model with existing conventional 

methods 
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The percentage variance/deviation of each method from the experimental value is 

presented in Table 5.2.  The material constant for the empirical formulas Neuber 

(Equation 5.5), Peterson (Equation 5.6) and Heywood (Equation 5.7) are obtained from 

[26].  
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Table 5.2  

Fatigue notch factor % variance from experimental value for different methods 

Radius Experiment Weibull Neuber Peterson Heywood Closed form 
sol. 

 Kf Kf % Var Kf % Var Kf % Var Kf % Var Kf % Var 

0.150 1.56 1.54 1.28 1.61 -3.21 1.54 1.28 2.56 64.10 1.58 -1.28 
0.213 1.73 1.70 1.73 1.69 2.31 1.69 2.31 2.68 54.91 1.75 -1.16 
0.284 1.73 1.74 -0.58 1.74 -0.58 1.80 -4.05 2.77 60.12 1.78 -2.89 

 

Table 5.2 shows that the Weibull fatigue notch factor exhibits relatively lower 

percentage variance from experimental values compared to other existing conventional 

methods. Also, the closed form solution is also observed to give relatively accurate 

prediction compared to the existing classical methods as it has lower percentage variance 

from experimental results. To a reasonable extent, it can be said that the newly developed 

probabilistic framework and the closed form solution more accurately predict fatigue 
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notch factor of notched nickel base superalloy compared to the existing conventional 

methods.  

 

5.3  Notch Size Effects on Fatigue Notch Factor, Notch Sensitivity Index, and 

Probability of Failure for Titanium Alloy. 

Here, seven different test cases were simulated in Abaqus with ten different grain 

orientations for each of the test case. The stress distribution for some of the test cases 

simulated in Abaqus is presented in Figure 5.6 showing the maximum principal stress in 

the y-direction (axial).  

 

Figure 5.6. Stress distribution for notched titanium alloy: (a)  = 0.33, R = -1 and applied 

load P = 173.6 MPa (b)  = 0.33, R = 0.1 and P = 158.9 MPa (c)  = 0.33, R = 0.5 and P 

= 104.6 MPa (d)  = 0.203, R = 0.1 and P = 167.2 MPa. (All results in MPa) 
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The stress distribution obtained from the finite element analysis was used in the 

developed model for determining the probability of failure for each test case. Also, the 

average fatigue notch factor is computed for each test case using the developed 

probabilistic framework. Figure 5.7 shows probability of failure plotted against the notch 

root radii for ten different grain orientations.  

 

Figure 5.7. Probability of failure vs. notch radius for notched titanium alloy at load ratio 

R= 0.1. 
 

Figure 5.7 shows that the probability of failure increases with increasing notch 

root radius. However, an exception is noted for titanium alloy specimen with 0.127 mm 
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notch root radius where some of the probabilities of failure for some of the grain 

orientations are higher than for the remaining notch root radii (0.203 mm and 0.33 mm).  

This is an indication that grain orientation also plays an equally important role in 

determining the occurrence of fatigue failure in notch titanium alloy specimen.   

The effect of load ratio on the probability of failure of notched titanium alloy is 

also investigated by plotting probability of failure against notch root radii for two 

different load ratios R= 0.1 and R= 0.5 as shown in Figure 5.8.  

 

Figure 5.8. Probability of failure of notched titanium alloy vs. notch radius at two 

different load ratios R= 0.1 and R= 0.5. 
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Figure 5.8 shows the important role played by the load ratio on the susceptibility 

of notched titanium alloy to fatigue failure. The probability of failure are higher at load 

ratio of R= 0.1 than at R = 0.5 which implies that components operating at load ratio of 

0.5 will have better fatigue life compared to components operating at load ratio of 0.1. 

This is an important observation to note while designing components that will be 

subjected or exposed to fatigue loading.  

The fatigue notch factor determined using the developed method is compared to 

experimentally obtained values from Naik et al. [140], the close from solution developed 

and other existing conventional method such as Neuber as shown in Figure 5.9 and Table 

5.3.   



 

97 

 

Figure 5.9. Factigue notch factor as a function notch root radius and load ratio compared 

to experimental values. 

 

Table 5.3 

 Fatigue notch factor % variance from experimental value for Weibull, close form 

solution and Neuber methods 

Radius Experiment kf Weibull@R=0.1 Weibull@R=0.5 Neuber Closed Form 

Sol. 

 R=0.1 R=0.5 Kf % Var kf % Var kf % Var kf % Var 

0.127 1.98 1.65 2.05 -3.54 1.72 -4.24 1.79 9.60 2.00 -1.01 

0.203 1.71 1.74 1.86 -8.77 1.83 -5.17 1.89 -10.53 1.80 -5.26 

0.33 1.80 1.75 1.89 -5.00 1.82 -4.00 2.00 -11.11 1.88 -4.44 
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Figure 5.10. Notch sensitivity index as a function notch root radius and load ratio compared to 

experimental values. 

 

It can be noted from Table 5.3 that the percentage variance for Weibull fatigue 

notch factor and the developed closed form solution is lower compared to Neuber’s 

predictions. Thus, the developed probabilistic model and the close form solution are  

more accurate in predicting fatigue notch factor of notched titanium alloy compared to 

Neuber method.   

The associated notch sensitivity index is also computed and compared to 

experimental values as shown in Figure 5.10. 
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5.4  Fatigue Notch Factor of IN100 with Inclusion. 

To identify where the inclusion has maximum influence on the stress distribution 

on the specimen, the medium geometry was used. The geometry has a diameter of 5 mm, 

notch root radius 0.213 mm and thickness 0.267 mm with an applied stress of 568 MPa. 

The geometry is modeled with one Horizontal inclusion of major axis 150 um and minor 

axis 75 um. The inclusion is placed at varying distance from the notch root as a function 

of the grain size (the grain size used for nickel being 0.064mm). The maximum stress 

obtained for each test case is as presented in Table 5.4.  

Table 5.4 

Maximum stress for different inclusion distance from notch root 

Distance of Inclusion Max S22 Max Von Mises 

10g 1871 1624 

8g 1894 1672 

6g 1885 1641 

4g 1884 1650 

 

Simulations were then conducted with inclusion placed at 8 grain distance from 

the notch root for the nickel base specimens. The fatigue notch factor is computed based 

on the stress distribution extracted from Abaqus for notch nickel base super alloy with 

inclusion. Table 5.5 shows how the computed fatigue notch factor compare with the 

fatigue notch factors of notched nickel base superalloy without inclusion. Figure 5.11 

graphically shows the variation in the fatigue notch factor of notch nickel base superalloy 

in the presence of inclusion.  
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Table 5.5  

Fatigue notch factor of notch nickel base superalloy with and without inclusion 

Notch Radius Fatigue Notch factor (Kf) 

 Without Inclusion With Inclusion 

0.150 1.54 2.01 

0.213 1.70 2.38 

0.284 1.74 2.61 

 

Both Table 5.5 and Figure 5.11 show that the introduction of one horizontal 

inclusion in the matrix of the notched nickel base superalloy increases the fatigue notch 

factor. Thus component with inclusions of any kind will tend to have lower fatigue 

strength than components without inclusion. This is expected based on the fact that 

inclusions serve as favorable sites of premature plastic deformation due to high stress 

concentration in the vicinity of the inclusion curvature.   
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Figure 5.11. Fatigue notch factor vs. notch root radius for notched nickel base superalloy 

with and without inclusion.  

 

5.5  Effects of Inclusion orientation on Fatigue Notch Factor of IN100 

Here, the effect of changing the orientation of the inclusion within the matrix of a 

notched nickel base superalloy over its fatigue notch factor is investigated. Three 

different inclusion orientations (horizontal, 450 and 900 ) are simulated in Abaqus using 

the model with notch root radius 0.213 mm and the stress distributions obtained are as 

presented in Figure 5.12. The maximum stress in each case and the fatigue notch factor 

computed using the stress distribution is presented in Table 5.6.  
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Figure 5.12. Stress distribution for different inclusion orientaton in Nickel base 

superalloy alloy matrix. 

 

Table 5.6  

Maximum stress and associated fatigue notch factor for three different inclusion 

orientations 

Inclusion Orientation S22  MPa Kf 

Horizontal 1839 2.01 
Vertical (900) 1881 2.36 

Diagonal (450) 1884 2.38 

A significant change is noted in the maximum stress of the notched nickel base 

superalloy when the orientation of the inclusion is changed from horizontal to vertical. 

However, a minimal change is noted when the orientation is changed from vertical to 
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Diagonal. The changes is also reflected in the associated fatigue notch factor with 

horizontal orientation of inclusion having the lowest fatigue nitch factor of 2.01 and the 

Diagonal orientation of grain having the highest fatigue notch factor of 2.38. It can be 

inferred from this observation that vertical and inclined inclusion are more detrimental to 

fatigue failure and effort should be made to avoid them in metal forming operations of 

nickel based superalloy.  
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CHAPTER 6 

 

CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 

 

6.1  Conclusions 

A new probabilistic framework for fatigue notch factor was developed for 

predicting the microstructure- sensitive fatigue notch factor of aero engine materials such 

as titanium alloy and nickel base superalloy. The developed model make use of stress 

distribution result obtain from finite element crystal plasticity simulation of models in 

Abaqus. A number of phenomena investigated include how the notch radius, presence of 

inclusion, grain orientation and orientation of inclusion all influence the fatigue notch 

factor, probability of failure and the notch sensitivity of the material.  

The result shows that the probability of failure, fatigue notch factor and notch 

sensitivity index all increase with increasing notch root radius. Also it is noted that the 

grain orientation of the material plays an important role in determining or predicting the 

fatigue strength of the material; the probability of failure varies at the same notch root 

radius for different grain orientation. Investigation of the effect of load ratio on  

probability of failure shows that load ratio of 0.1 is more detrimental compared to load 

ratio of 0.5 for component operating under fatigue loading. Lastly, it is established that 

vertical and diagonal orientation of inclusion within nickel base superalloy matrix gives 

higher fatigue notch factor and probability of failure compared to the horizontal inclusion 

orientation and thus if possible vertical and inclined orientation of inclusion should be 

avoided during metal forming of nickel base superalloy.  



 

105 

 6.2  Recommendations for Future Work 

The different areas that can be developed on to improve this research include:  

1. The inclusion used in this work is assumed to be elliptical and fully bonded to the 

matrix. However, in real life inclusions do not have perfect shape and could 

exhibit different interaction with the matrix. These could be bonded, partially 

bonded, crack or any other form. Hence the research can be improved by 

modeling actual inclusion- matrix interaction as observed from a CT scan.  

2. Only the presence of one inclusion has been investigated in this work, future work 

can consider investigating the effect of inclusion cluster on fatigue notch factor 

and probability of failure of materials.  
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